Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
101
result(s) for
"de Jong, Rob C. M."
Sort by:
Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response
2018
Annexin A5 (AnxA5) is known to have anti-inflammatory and anti-apoptotic properties. Inflammation and apoptosis are key processes in post-ischemic cardiac remodeling. In this study, we investigated the effect of AnxA5 on left ventricular (LV) function and remodeling three weeks after myocardial ischemia-reperfusion (MI-R) injury in hypercholesterolemic ApoE*3-Leiden mice. Using a mouse model for MI-R injury, we demonstrate AnxA5 treatment resulted in a 27% reduction of contrast-enhanced MRI assessed infarct size (IS). End-diastolic and end-systolic volumes were decreased by 22% and 38%, respectively. LV ejection fraction was increased by 29% in the AnxA5 group compared to vehicle. Following AnxA5 treatment LV fibrous content after three weeks was reduced by 42%, which was accompanied by an increase in LV wall thickness of the infarcted area by 17%. Two days and three weeks after MI-R injury the number of cardiac macrophages was significantly reduced in both the infarct area and border zones following AnxA5 treatment compared to vehicle treatment. Finally, we found that AnxA5 stimulation leads to a reduction of IL-6 production in bone-marrow derived macrophages
in vitro
. AnxA5 treatment attenuates the post-ischemic inflammatory response and ameliorates LV remodeling which improves cardiac function three weeks after MI-R injury in hypercholesterolemic ApoE*3-Leiden mice.
Journal Article
The epigenetic factor PCAF regulates vascular inflammation and is essential for intimal hyperplasia development
by
de Vries, Margreet R.
,
de Jong, Rob C. M.
,
Karper, Jacco C.
in
Acetyltransferase
,
Animals
,
Apolipoprotein E
2017
Genetic P300/CBP-associated factor (PCAF) variation affects restenosis-risk in patients. PCAF has lysine acetyltransferase activity and promotes nuclear factor kappa-beta (NFκB)-mediated inflammation, which drives post-interventional intimal hyperplasia development. We studied the contributing role of PCAF in post-interventional intimal hyperplasia.
PCAF contribution to inflammation and intimal hyperplasia was assessed in leukocytes, macrophages and vascular smooth muscle cells (vSMCs) in vitro and in a mouse model for intimal hyperplasia, in which a cuff is placed around the femoral artery. PCAF deficiency downregulate CCL2, IL-6 and TNF-alpha expression, as demonstrated on cultured vSMCs, leukocytes and macrophages. PCAF KO mice showed a 71.8% reduction of vSMC-rich intimal hyperplasia, a 73.4% reduction of intima/media ratio and a 63.7% reduction of luminal stenosis after femoral artery cuff placement compared to wild type (WT) mice. The association of PCAF and vascular inflammation was further investigated using the potent natural PCAF inhibitor garcinol. Garcinol treatment reduced CCL2 and TNF-alpha expression, as demonstrated on cultured vSMCs and leukocytes. To assess the effect of garcinol treatment on vascular inflammation we used hypercholesterolemic ApoE*3-Leiden mice. After cuff placement, garcinol treatment resulted in reduced arterial leukocyte and macrophage adherence and infiltration after three days compared to untreated animals.
These results identify a vital role for the lysine acetyltransferase PCAF in the regulation of local inflammation after arterial injury and likely the subsequent vSMC proliferation, responsible for intimal hyperplasia.
Journal Article
Hotspot DNA Methyltransferase 3A (DNMT3A) and Isocitrate Dehydrogenase 1 and 2 (IDH1/2) Mutations in Acute Myeloid Leukemia and Their Relevance as Targets for Immunotherapy
by
de Jong, Rob C. M.
,
Honders, M. Willy
,
Koutsoumpli, Georgia
in
Acute myeloid leukemia
,
Alleles
,
Bone marrow
2024
DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7–23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide–HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy.
Journal Article
Atorvastatin pleiotropically decreases intraplaque angiogenesis and intraplaque haemorrhage by inhibiting ANGPT2 release and VE-Cadherin internalization
2021
ObjectiveStatins pleiotropically provide additional benefits in reducing atherosclerosis, but their effects on intraplaque angiogenesis (IPA) and hemorrhage (IPH) remain unclear. Therefore, we discriminated statin’s lipid-lowering dependent and independent effects on IPA and IPH.Approach and resultsApoE3*Leiden mice are statin-responsive due to ApoE and LDLR presence, but also allow to titrate plasma cholesterol levels by diet. Therefore, ApoE3*Leiden mice were fed a high-cholesterol-inducing-diet (HCD) with or without atorvastatin (A) or a moderate-cholesterol-inducing-diet (MCD). Mice underwent vein graft surgery to induce lesions with IPA and IPH. Cholesterol levels were significantly reduced in MCD (56%) and HCD + A (39%) compared to HCD with no significant differences between MCD and HCD + A. Both MCD and HCD + A have a similar reduction in vessel remodeling and inflammation comparing to HCD. IPA was significantly decreased by 30% in HCD + A compared to HCD or MCD. Atorvastatin treatment reduced the presence of immature vessels by 34% vs. HCD and by 25% vs. MCD, resulting in a significant reduction of IPH. Atorvastatin’s anti-angiogenic capacity was further illustrated by a dose-dependent reduction of ECs proliferation and migration. Cultured mouse aortic-segments lost sprouting capacity upon atorvastatin treatment and became 30% richer in VE-Cadherin expression and pericyte coverage. Moreover, Atorvastatin inhibited ANGPT2 release and decreased VE-Cadherin(Y685)-phosphorylation in ECs.ConclusionsAtorvastatin has beneficial effects on vessel remodeling due to its lipid-lowering capacity. Atorvastatin has strong pleiotropic effects on IPA by decreasing the number of neovessels and on IPH by increasing vessel maturation. Atorvastatin improves vessel maturation by inhibiting ANGPT2 release and phospho(Y658)-mediated VE-Cadherin internalization.
Journal Article
Phosphorylcholine antibodies restrict infarct size and left ventricular remodelling by attenuating the unreperfused post‐ischaemic inflammatory response
by
Pluijmert, Niek J.
,
Jong, Rob C. M.
,
Atsma, Douwe E.
in
Animals
,
Antibodies
,
Antibodies, Monoclonal - pharmacology
2021
Phosphorylcholine is a pro‐inflammatory epitope exposed on apoptotic cells, and phosphorylcholine monoclonal immunoglobulin (Ig)G antibodies (PC‐mAb) have anti‐inflammatory properties. In this study, we hypothesize that PC‐mAb treatment reduces adverse cardiac remodelling and infarct size (IS) following unreperfused transmural myocardial infarction (MI). Unreperfused MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery in hypercholesterolaemic APOE*3‐Leiden mice. Three weeks following MI, cardiac magnetic resonance (CMR) imaging showed a reduced LV end‐diastolic volume (EDV) by 21% and IS by 31% upon PC‐mAb treatment as compared to the vehicle control group. In addition, the LV fibrous content was decreased by 27% and LV wall thickness was better preserved by 47% as determined by histological analysis. Two days following MI, CCL2 concentrations, assessed by use of ELISA, were decreased by 81% and circulating monocytes by 64% as assessed by use of FACS analysis. Additionally, local leucocyte infiltration determined by immunohistological analysis showed a 62% decrease after three weeks. In conclusion, the local and systemic inflammatory responses are limited by PC‐mAb treatment resulting in restricted adverse cardiac remodelling and IS following unreperfused MI. This indicates that PC‐mAb holds promise as a therapeutic agent following MI limiting adverse cardiac remodelling.
Journal Article
Phosphorylcholine Monoclonal Antibody Therapy Decreases Intraplaque Angiogenesis and Intraplaque Hemorrhage in Murine Vein Grafts
by
de Vries, Margreet R.
,
de Jong, Rob C. M.
,
van Alst, Louise A.
in
Angiogenesis
,
Atherosclerosis
,
Collagen
2022
Phosphorylcholine (PC) is one of the main oxLDL epitopes playing a central role in atherosclerosis, due to its atherogenic and proinflammatory effects. PC can be cleared by natural IgM antibodies and low levels of these antibodies have been associated with human vein graft (VG) failure. Although PC antibodies are recognized for their anti-inflammatory properties, their effect on intraplaque angiogenesis (IPA) and intraplaque hemorrhage (IPH)—interdependent processes contributing to plaque rupture—are unknown. We hypothesized that new IgG phosphorylcholine antibodies (PC-mAb) could decrease vulnerable lesions in murine VGs.Therefore, hypercholesterolemic male ApoE3*Leiden mice received a (donor) caval vein interposition in the carotid artery and weekly IP injections of (5 mg/kg) PCmAb (n = 11) or vehicle (n = 12) until sacrifice at day 28. We found that PCmAb significantly decreased vein graft media (13%), intima lesion (25%), and increased lumen with 32% compared to controls. PCmAb increased collagen content (18%) and decreased macrophages presence (31%). PCmAb resulted in 23% decreased CD163+ macrophages content in vein grafts whereas CD163 expression was decreased in Hb:Hp macrophages. PCmAb significantly lowered neovessel density (34%), EC proliferation and migration with/out oxLDL stimulation. Moreover, PCmAb enhanced intraplaque angiogenic vessels maturation by increasing neovessel pericyte coverage in vivo (31%). Together, this resulted in a 62% decrease in IPH. PCmAb effectively inhibits murine atherosclerotic lesion formation in vein grafts by reducing IPA and IPH via decreased neovessel density and macrophages influx and increased neovessel maturation. PC-mAb therefore holds promise as a new therapeutic approach to prevent vein graft disease.
Journal Article
Mutated DNMT3A creates a public HLADQ- binding neoantigen on acute myeloid leukemia
by
Argiro, Eva M.
,
de Jong, Rob C. M.
,
Honders, M. Willy
in
Acute myeloid leukemia
,
Algorithms
,
Antigens
2025
Patients with acute myeloid leukemia (AML) often carry the same gene mutations. Neoantigens encoded by these mutations are attractive targets for immunotherapy.
We searched for public human leukocyte antigen (HLA) class II-restricted neoantigens on AML using an
T cell stimulation method. Peptides from 26 recurrent genetic aberrations were assessed for predicted HLA class II binding, and 24 long neopeptides encoded by 10 recurrent mutations were synthesized. Naive CD4 T cells from healthy individuals were cocultured with autologous dendritic cells pulsed with neopeptides.
Multiple CD4 T cell clones were isolated that recognized neopeptides encoded by 5 different genetic aberrations. Two of these peptides, one from the well-known
hotspot mutation and one from a long alternative reading frame created by frameshift mutations in
, were recognized by CD4 T cell clones after endogenous processing and presentation on cell lines transduced or CRISPR-Cas9-edited with the mutation of interest. The T cell clone for DNMT3A-R882H was also activated upon stimulation with primary AML samples from HLA-DQB1*06:02 or -DQB1*06:03 positive patients with the mutation.
We here identified a public HLA class II-restricted neoantigen encoded by a driver mutation occurring in 10% of patients with AML that could become an important target for immunotherapy to treat patients with
-mutated AML.
Journal Article
IRF3 and IRF7 mediate neovascularization via inflammatory cytokines
by
Simons, Karin H.
,
Vries, Margreet R.
,
Jong, Rob C. M.
in
angiogenesis
,
Animals
,
arteriogenesis
2019
Objective To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization. Methods Unilateral hind limb ischaemia was induced in Irf3−/−, Irf7−/− and C57BL/6 mice by ligation of the left common femoral artery. Post‐ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation. Results Post‐ischaemic blood flow recovery was decreased in Irf3−/− and Irf7−/− mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3−/− and Irf7−/− mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3−/− and Irf7−/− mice at t28. In addition, mRNA expression levels of pro‐inflammatory cytokines (tnfα, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of Irf3−/− and Irf7−/− mice compared to C57BL/6 mice. Conclusion Deficiency of IRF3 and IRF7 results in impaired post‐ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.
Journal Article
Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia
by
de Jong, Rob C.M.
,
Kester, Michel G.D.
,
Heemskerk, Mirjam H.M.
in
Acute myelocytic leukemia
,
Acute myeloid leukemia
,
Adoptive Transfer
2019
The most frequent subtype of acute myeloid leukemia (AML) is defined by mutations in the nucleophosmin 1 (NPM1) gene. Mutated NPM1 (ΔNPM1) is an attractive target for immunotherapy, since it is an essential driver gene and 4 bp frameshift insertions occur in the same hotspot in 30%-35% of AMLs, resulting in a C-terminal alternative reading frame of 11 aa. By searching the HLA class I ligandome of primary AMLs, we identified multiple ΔNPM1-derived peptides. For one of these peptides, HLA-A*02:01-binding CLAVEEVSL, we searched for specific T cells in healthy individuals using peptide-HLA tetramers. Tetramer-positive CD8+ T cells were isolated and analyzed for reactivity against primary AMLs. From one clone with superior antitumor reactivity, we isolated the T cell receptor (TCR) and demonstrated specific recognition and lysis of HLA-A*02:01-positive ΔNPM1 AML after retroviral transfer to CD8+ and CD4+ T cells. Antitumor efficacy of TCR-transduced T cells was confirmed in immunodeficient mice engrafted with a human AML cell line expressing ΔNPM1. In conclusion, the data show that ΔNPM1-derived peptides are presented on AML and that CLAVEEVSL is a neoantigen that can be efficiently targeted on AML by ΔNPM1 TCR gene transfer. Immunotherapy targeting ΔNPM1 may therefore contribute to treatment of AML.
Journal Article
DNA barcoded peptide-MHC multimers to measure and monitor minor histocompatibility antigen-specific T cells after allogeneic stem cell transplantation
2024
Allogeneic stem cell transplantation (alloSCT) provides a curative treatment option for hematological malignancies. After HLA-matched alloSCT, donor-derived T cells recognize minor histocompatibility antigens (MiHAs), which are polymorphic peptides presented by HLA on patient cells. MiHAs are absent on donor cells due to genetic differences between patient and donor. T cells targeting broadly expressed MiHAs induce graft-versus-leukemia (GvL) reactivity as well as graft-versus-host disease (GvHD), while T cells for MiHAs with restricted or preferential expression on hematopoietic or non-hematopoietic cells may skew responses toward GvL or GvHD, respectively. Besides tissue expression, overall strength of GvL and GvHD is also determined by T-cell frequencies against MiHAs.Here, we explored the use of DNA barcode-labeled peptide-MHC multimers to detect and monitor antigen-specific T cells for the recently expanded repertoire of HLA-I-restricted MiHAs. In 16 patients who experienced an immune response after donor lymphocyte infusion, variable T-cell frequencies up to 30.5% of CD8+ T cells were measured for 49 MiHAs. High T-cell frequencies above 1% were measured in 12 patients for 19 MiHAs, with the majority directed against mismatched MiHAs, typically 6–8 weeks after donor lymphocyte infusion and at the onset of GvHD. The 12 patients included 9 of 10 patients with severe GvHD, 2 of 3 patients with limited GvHD and 1 of 3 patients without GvHD.In conclusion, we demonstrated that barcoded peptide-MHC multimers reliably detect and allow monitoring for MiHA-specific T cells during treatment to investigate the kinetics of immune responses and their impact on development of GvL and GvHD after HLA-matched alloSCT.
Journal Article