Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
223
result(s) for
"de Kroon, Hans"
Sort by:
Lost in diversity
by
T. E. Anne Cotton
,
Jan Willem van der Paauw
,
Liesje Mommer
in
Biodiversity
,
Biomass
,
BIOS Applied Bioinformatics
2018
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a ‘black box’ in biodiversity experiments, leaving these fungi unidentified.
Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity.
Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity.
Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.
Journal Article
Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide
by
Jones, Owen R.
,
Salguero-Gómez, Roberto
,
Mbeau-Ache, Cyril
in
Anthropogenic factors
,
Biological Sciences
,
Bosecologie en Bosbeheer
2016
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast–slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast–slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.
Journal Article
Plants are less negatively affected by flooding when growing in species-rich plant communities
by
Tina Buchmann
,
Christine Fischer
,
Laurentius A. C. J. Voesenek
in
Aeration
,
aerenchyma
,
Biodiversity
2017
Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions.
An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity.
We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance.
As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.
Journal Article
Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment
by
Lange, Markus
,
Hildebrandt, Anke
,
Kreutziger, Yvonne
in
Agglomeration
,
Aggregation
,
Biodiversity
2019
1. The temporal and spatial dynamics of soil water are closely interlinked with terrestrial ecosystems functioning. The interaction between plant community properties such as species composition and richness and soil water mirrors fundamental ecological processes determining above-ground-below-ground feedbacks. Plantwater relations and water stress have attracted considerable attention in biodiversity experiments. Yet, although soil scientific research suggests an influence of ecosystem productivity on soil hydraulic properties, temporal changes of the soil water content and soil hydraulic properties remain largely understudied in biodiversity experiments. Thus, insights on how plant diversity—productivity relationships affect soil water are lacking. 2. Here, we determine which factors related to plant community composition (species and functional group richness, presence of plant functional groups) and soil (organic carbon concentration) affect soil water in a long-term grassland biodiversity experiment (The Jena Experiment). 3. Both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness played no role. The effect of species richness changed from positive to negative and expanded to deeper soil with time. Shortly after establishment, increased topsoil water content was related to higher leaf area index in species-rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species-rich plots due to faster drainage of rainwater. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water-use efficiency. For instance, topsoils in plots containing grasses were generally drier, while plots with legumes were moister. 4. Synthesis. Our decade-long experiment reveals that the maturation of grasslands changes the effects of plant richness from influencing soil water content through shading effects to altering soil physical characteristics in addition to modification of water uptake depth. Functional groups affected the soil water distribution by characteristic shifts of root water uptake depth, but did not enhance exploitation of the overall soil water storage. Our results reconcile previous seemingly contradictory results on the relation between grassland species diversity and soil moisture and highlight the role of vegetation composition for soil processes.
Journal Article
Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species
by
Oram, Natalie J.
,
Ravenek, Janneke M.
,
Gockele, Annette
in
Additive partitioning
,
Biodiversity
,
Biomass
2018
1. Below-ground resource partitioning is often proposed as the underlying mechanism for the positive relationship between plant species richness and productivity. For example, if species have different root distributions, a mixture of plant species may be able to use the available resources more completely than the individual species in a monoculture. However, there is little experimental evidence for differentiation in vertical root distributions among species and its contribution to biodiversity effects. 2. We determined species-specific root standing biomass over depth using molecular techniques (real-time qPCR) in a large grassland biodiversity experiment (one to eight plant species mixtures), in 2 years. Species-specific root biomass data were used to disentangle the effects of positive interactions between species (complementarity effects) and effects due to dominance of productive species (selection effects) on root biomass in mixtures. In a next step, these biodiversity effects were linked to the diversity of rooting depths and the averaged rooting depth of the community. 3. Root biomass increased with species richness. This was mainly due to positive interactions (the complementarity effect), which increased with species richness below-ground. In contrast, the selection effect decreased with species richness. Although there was considerable variation in vertical root distribution between species in monocultures, the diversity of rooting strategies did not explain the complementarity effect. Rather, the abudance of deep-rooting species in mixtures (i.e. high community-weighted mean) was significantly related to the complementarity effect. Comparing the \"predicted\" root distribution (based on monocultures) to the actual distribution in mixtures, we found that mixtures rooted deeper than expected, but this did not better explain the complementarity effect. 4. Synthesis. This study demonstrates that vertical root distributions of species provide only subtle evidence for resource partitioning. W e found no evidence that functional diversity in vertical rooting patterns was important for the complementarity effect, in contrast to our expectation that the enhancement of productivity was due to resource partitioning. Alternatively, we found significant but weak relationships between the complementarity effect and deep-rooting communities, based on the communityweighted mean root distribution. This suggests that factors other than below-ground resource partitioning alone may drive the biodiversity-productivity relationship.
Journal Article
Plant species richness negatively affects root decomposition in grasslands
by
Gessler, Arthur
,
Mommer, Liesje
,
van Ruijven, Jasper
in
Biodiversity
,
biodiversity–ecosystem functioning
,
biomass production
2017
1. Plant diversity enhances many ecosystem functions, including root biomass production, which drives soil carbon input. Although root decomposition accounts for a large proportion of carbon input for soil, little is known about plant diversity effect on this process. Plant diversity may affect root decomposition in two non-exclusive ways: by providing roots of different substrate quality (e.g. root chemistry) and/or by altering the soil environment (e.g. microclimate). 2. To disentangle these two pathways, we conducted three decomposition experiments using a litter-bag approach in a grassland biodiversity experiment. We hypothesized that: (i) plant species richness negatively affects substrate quality (indicated by increased C:N ratios), which we tested by decomposing roots collected from each experimental plot in one common plot; (ii) plant species richness positively affects soil environment (indicated by increased soil water content), which we tested by decomposing standardized roots in all experimental plots; (iii) the overall effect of plant species richness on root decomposition, due to the contrast between quality and environmental effects, is neutral, which we tested by decomposing community roots in their 'home' plots. 3. Plant species richness negatively affected root decomposition in all three experiments. The negative effect of plant species richness on substrate quality was largely explained by increased root C:N ratios along the diversity gradient. Functional group presence explained more variance in substrate quality than species richness. Here, the presence of grasses negatively affected substrate quality and root C:N ratios, while the presence of legumes and small herbs had positive effects. Plant species richness had a negative effect on soil environment despite its positive effect on soil water content which is known to stimulate decomposition. We argue that – instead of soil water content – a combined effect of soil temperature and seasonality might drive environmental effect of plant diversity on decomposition in our plant communities, but this remains to be tested. 4. Synthesis. Our results demonstrate that both substrate quality and soil environment contribute to the net negative effect of plant diversity on root decomposition. This study promotes our mechanistic understanding of increased soil carbon accumulation in more diverse grassland plant communities.
Journal Article
Below-ground resource partitioning alone cannot explain the biodiversity-ecosystem function relationship: A field test using multiple tracers
by
Jesch, Annette
,
Ravenek, Janneke M.
,
Gessler, Arthur
in
belowground biomass
,
Biodiversity
,
Biomass
2018
1. Below-ground resource partitioning is among the most prominent hypotheses for driving the positive biodiversity-ecosystem function relationship. However, experimental tests of this hypothesis in biodiversity experiments are scarce, and the available evidence is not consistent. 2. We tested the hypothesis that resource partitioning in space, in time or in both space and time combined drives the positive effect of diversity on both plant productivity and total community resource uptake. At the community level, we predicted that total community resource uptake and biomass production above- and below-ground will increase with increased species richness or functional group richness. We predicted that, at the species level, resource partition breadth will become narrower, and that overlap between the resource partitions of different species will become smaller with increasing species richness or functional group richness. 3. We applied multiple resource tracers (Li and Rb as potassium analogues, the water isotopologues—H₂¹⁸O and ²H₂O, and ¹⁵N) in three seasons at two depths across a species and functional group richness gradient at a grassland biodiversity experiment. We used this multidimensional resource tracer study to test if plant species partition resources with increasing plant diversity across space, time or both simultaneously. 4. At the community level, total community resource uptake of nitrogen and potassium and above- and below-ground biomass increased significantly with increasing species richness but not with increasing functional group richness. However, we found no evidence that resource partition breadth or resource partition overlap decreased with increasing species richness for any resource in space, time or both space and time combined. 5. Synthesis. These findings indicate that below-ground resource partitioning may not drive the enhanced resource uptake or biomass production found here. Instead, other mechanisms such as facilitation, species-specific biotic feedback or above-ground resource partitioning are likely necessary for enhanced overall ecosystem function.
Journal Article
Linking root traits and competitive success in grassland species
by
Ravenek, Janneke M.
,
Visser, Eric J. W.
,
Smit-Tiekstra, Annemiek
in
Agricultural soils
,
Biomedical and Life Sciences
,
Competition (Biology)
2016
Background and aims Competition is an important force shaping plant communities. Here we test the hypothesis that high overall root length density and selective root placement in nutrient patches, as two alternative strategies, confer competitive advantage in species mixtures. Methods We performed a full-factorial pairwise competition experiment with eight grassland species in soil with homogeneously distributed nutrients, or with nutrients concentrated in a single patch. We measured species-specific relative growth rate, root length density, selective root placement, and ion uptake rates of all species in monocultures and in mixtures. Results Grasses showed higher specific root length overall and forbs a higher selective root placement in the nutrient patch. However, relative growth rate and root length density were more strongly related to competitive ability (measured as relative yield per plant), with little distinction between grasses and forbs. Conclusions Our results suggest that short-term competitive success was related to fast growth and high root densities, irrespective of nutrient heterogeneity. Developing a large root mass quickly may overwhelm the importance of other traits in the establishment phase of plants, although these other traits may prove to be important in the long run.
Journal Article
Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity
by
Visser, Eric J. W.
,
Padilla, Francisco M.
,
Hendriks, Marloes
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
belowground biomass
2012
1. Although a major part of plant biomass is underground, we know little about the contribution of different species to root biomass in multispecies communities. We summarize studies on root distributions and plant responses to species‐specific soil biota and formulate three hypotheses to explain how root responses may drive species coexistence and ecosystem productivity. 2. Recent studies suggest that root growth of some species may be stimulated in species mixtures compared with monocultures without hampering the growth of other species, leading to below‐ground overyielding. Further studies suggest that these responses are the result of reduced impairment of growth by species‐specific plant pathogens that accumulate in monocultures. 3. First, we hypothesize that due to pathogen‐constrained growth, monocultures are ‘under‐rooted’, i.e. they do not have enough roots for optimal acquisition of nutrients. Although elevated root production in mixtures represents a cost to the plant, improved nutrition will eventually result in improved plant performance. 4. Second, due to the plant species specificity of the soil biotic communities, we suggest that plant species in mixtures develop an intransitive competitive network in which none of the species is competitively superior to all other species. Competitive intransitivity is proposed as a mechanism of species coexistence. 5. As a final hypothesis, we suggest that pathogen‐mediated root overproduction in species mixtures determines the patterns of community productivity and overyielding, both directly, by improving plant performance, and indirectly, by releasing more carbon into the soil, resulting in enhanced availability of nutrients. 6. Synthesis.Recent evidence suggests that species coexistence and ecosystem productivity may be the result of an interplay between pathogen‐driven plant responses and nutritional consequences. We suggest that responses of the roots are an important yet mostly overlooked intermediary between soil biota and plant community responses to biodiversity.
Journal Article
Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence
by
Huber, Heidrun
,
Visser, Eric J. W.
,
Zhang, Qian
in
adventitious roots
,
carbohydrates
,
Ecosystem
2017
Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding.
The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots.
As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system.
The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events.
Journal Article