Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "de Voogt, Pim"
Sort by:
patRoon: open source software platform for environmental mass spectrometry based non-target screening
Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify numerous chemicals simultaneously in highly complex samples. However, current data processing software either lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are restricted in input data formats. In this paper we present patRoon , a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to simplify and perform automated processing of complex (environmental) data effectively. patRoon implements several effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.
Wastewater-based tracing of doping use by the general population and amateur athletes
The present study investigates the applicability of the chemical analysis of wastewater to assess the use of doping substances by the general population and amateur athletes. To this end, an analytical methodology that can identify and quantify a list of 15 substances from the groups of anabolic steroids, weight loss products, and masking agents in wastewater has been developed. The method uses solid phase extraction to increase the detection sensitivity of the target analytes, expected to be present at very low concentrations (ng L−1 range), and decrease possible matrix interferences. Instrumental analysis is performed by liquid chromatography coupled to high-resolution mass spectrometry, allowing data acquisition in both full scan and tandem MS mode. The method has been successfully validated at two concentration levels (50 and 200 ng L−1) with limits of quantification ranging between 0.7 and 60 ng L−1, intra- and inter-day precision expressed as relative standard deviation below 15%, procedural recoveries between 60 and 160% and matrix effects ranging from 45 to 121%. The stability of the analytes in wastewater was evaluated at different storage temperatures illustrating the importance of freezing the samples immediately after collection. The application of the method to 24-h composite wastewater samples collected at the entrance of three wastewater treatment plants and one pumping station while different sport events were taking place revealed the presence in wastewater, and hence the use, of the weight loss substances ephedrine, norephedrine, methylhexanamine, and 2,4-dinitrophenol. The use of these stimulants was visible just prior and during the event days and in greater amounts than anabolic steroids or masking agents.Graphical abstractChemical analysis of untreated wastewater reveals the use of prohibited doping substances during amateur sport event
Sampling and simultaneous determination of volatile per- and polyfluoroalkyl substances in wastewater treatment plant air and water
Volatile per- and polyfluoroalkyl substances (PFASs) are often used as precursors in the synthesis of nonvolatile PFASs. The volatile PFASs, which include the perfluoroalkyl iodides (PFAIs), fluorotelomer iodides (FTIs), fluorotelomer alcohols (FTOHs), fluorotelomer olefins (FTOs), fluorotelomer acrylates (FTACs), and fluorotelomer methacrylates (FTMACs), are often produced starting from the telomerization process. These volatile compounds can be present in the air and water environment and can be transformed into highly persistent perfluoroalkyl carboxylic acids. With the exception of FTOHs, which are well studied, the determination of other volatile PFASs is also of prime importance in studying the sources and fate of PFASs. In this study, a method was developed to determine representative precursor compounds that included PFAIs, FTIs, FTOs, FTACs, and FTMACs in wastewater treatment plant (WWTP) air and water samples. The sampling and sample preparation step involved the use of solid-phase extraction (SPE) cartridges with HLB™ material to enrich the analyte. Gas chromatography with mass spectrometry was employed for the detection and quantification of the analytes. Method validation results showed high linearity and sensitivity in the positive electron ionization-selected ion monitoring mode (+EI-SIM). The absolute instrumental limits of detection were in the range of 0.5 to 2 pg. The method detection limit (MDL) in air was 1 ng/m 3 with the exception of the FTACs which could be only be detected at concentrations higher than 40 ng/m 3 . The MDL in water was 10 ng/L. Direct spiking of the cartridges and analyte introduction by volatilization from the glass surface onto the SPE material had recoveries between 86 and 100%. The volatile PFASs were shown to readily partition into the air rather than into water. Consequently, large losses in the amount of PFASs were observed when these were spiked into the water. Graphical abstract Wastewater treatment plant air and water samples were passed through HLB™ solid-phase materials. The eluates were injected onto a GC-MS system to simultaneously determine the volatile PFASs.
Expected Risk as basis for assessment of safe use of chemicals
This paper describes a straightforward modeling procedure to derive ‘expected risk’ (ER) of chemical substances. Starting from proposed use volumes, intended uses, physical and chemical substance properties and toxicity information, the procedure combines multimedia environmental fate modeling with species sensitivity modeling to derive the probability that exposure concentrations exceed critical effect concentrations. The procedure was tested on 1977 so-called mono-constituent organic chemicals that had been registered to be marketed in the EU, after ‘possibility to be used safely’ had been demonstrated by showing that the possible Risk Quotients (RQ) defined as PEC/PNEC ratios (Predicted Exposure Concentration & Predicted No Effect Concentration) were expected to remain below the value of 1, as required by REACH. It appears from this study that (i) RQ and ER of chemicals can be calculated readily, reliably, transparently and reproducibly, that (ii) both RQ and ER can be used to assess whether a new chemical may exceed a chosen acceptability level, but that (iii) in addition ER can be straightforwardly used to rank chemicals according to expected environmental safety. In conclusion, the paper states that modeling ER of chemicals (instead of estimating RQ values), could strengthen the scientific basis of environmental risk assessment for use in REACH. The paper further recommends that more robust environmental risk calculation can be done by using acute EC50, instead of chronic NOEC as critical effect concentration.
Thyroid hormone metabolism and environmental chemical exposure
Background Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels. Results The current levels of T3 were positively correlated to BDE-99. A positive trend with FT4 and BDE-99 was also seen, while a positive correlation with T3 and dl-PCB was also seen. No correlation with TBG was seen for any of the contaminants. Neither the prenatal nor the current PCDD/F levels showed a relationship with the thyroid parameters in this relatively small group. Conclusion Once again the thyroid hormone metabolism (an increase in T3) seems to have been influenced by current background levels of common environmental contaminants: dl-PCBs and BDE-99. T3 is a product of target organs and abnormalities might indicate effects on hormone transporters and could cause pathology. While the influence on T3 levels may have been compensated, because the adolescents functioned normal at the time of the study period, it is questionable if this compensation is enough for all organs depending on thyroid hormones.
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)
Citation: Blum A, Balan SA, Scheringer M, Trier X, Goldenman G, Cousins IT, Diamond M, Fletcher T, Higgins C, Lindeman AE, Peaslee G, de Voogt P, Wang Z, Weber R. 2015. The Madrid statement on poly- and perfluoroalkyl substances (PFASs). Environ Health Perspect 123:A107-A111; http://dx.doi.org/10.1289/ehp.1509934 E-mail: arlenereensciencepolicy.org The views expressed in this statement are solely those of the authors and signatories. The authors declare they have no actual or potential competing financial interests. Published: 1 May 2015
Wastewater-based epidemiology generated forensic information: Amphetamine synthesis waste and its impact on a small sewage treatment plant
[Display omitted] •Malfunctioning of a small domestic wastewater treatment plant.•Fly-tipping of chemical waste originating from an amphetamine synthesis.•Pre-precursor of Amphetamine: APAA was confirmed; a route specific marker proposed.•Non-target screening was used to chemically profile wastewater.•Chemical profiles in wastewater for tracking illicit drug productions sites. Chemical analysis of domestic wastewater can reveal the presence of illicit drugs either consumed by a population or directly discharged into the sewer system. In the search for causes of a recent malfunctioning of a small domestic wastewater treatment plant aberrantly high loads of amphetamine were observed in the influent of the plant. Direct discharges of chemical waste from illegal production sites were suspected to be the cause. Illegal manufacturing of amphetamines creates substantial amounts of chemical waste. Here we show that fly-tipping of chemical waste originating from an amphetamine synthesis in the catchment of a small sewage treatment plant resulted in failure of the treatment process. Target analysis of drugs of abuse and non-target screening using high resolution mass spectrometry provided evidence for the presence of amphetamine produced from the precursor 1-phenylpropan-2-one by the Leuckart process through specific synthesis markers. Furthermore the identity and presence of the pre-precursor 3-oxo-2-phenylbutanamide was confirmed and a route specific marker was proposed. This is the first study that demonstrates that non-target screening of wastewater can identify intermediates, impurities and by products of the synthesis routes used in illegal manufacturing of amphetamine. The profiles of chemicals thus obtained can be used in tracking productions sites within the corresponding sewer catchment.
Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities
Background: Monitoring the scale of pharmaceuticals, illicit and licit drugs consumption is important to assess the needs of law enforcement and public health, and provides more information about the different trends within different countries. Community drug use patterns are usually described by national surveys, sales and seizure data. Wastewater-based epidemiology (WBE) has been shown to be a reliable approach complementing such surveys. Method: This study aims to compare and correlate the consumption estimates of pharmaceuticals, illicit drugs, alcohol, nicotine and caffeine from wastewater analysis and other sources of information. Wastewater samples were collected in 2015 from 8 different European cities over a one week period, representing a population of approximately 5 million people. Published pharmaceutical sale, illicit drug seizure and alcohol, tobacco and caffeine use data were used for the comparison. Results: High agreement was found between wastewater and other data sources for pharmaceuticals and cocaine, whereas amphetamines, alcohol and caffeine showed a moderate correlation. methamphetamine and 3,4- methylenedioxymethamphetamine (MDMA) and nicotine did not correlate with other sources of data. Most of the poor correlations were explained as part of the uncertainties related with the use estimates and were improved with other complementary sources of data. Conclusions: This work confirms the promising future of WBE as a complementary approach to obtain a more accurate picture of substance use situation within different communities. Our findings suggest further improvements to reduce the uncertainties associated with both sources of information in order to make the data more comparable.
Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations
The human diet is recognised as one possible major exposure route to the overall perfluorinated alkylated substances (PFAS) burden of the human population, resulting directly from contamination of dietary food items, as well as migration of PFAS from food packaging or cookware. Most European countries carry out national monitoring programs (food basket studies) to monitor contamination with pollutants. Usually, for PFASs, non-coordinated approaches are used in Europe, since food basket studies are mainly carried out by national authorities following national requirements and questions, making comparisons between different countries difficult. A harmonised sampling campaign collecting similar food items in a uniform procedure enabling direct comparison between different regions in Europe was designed. We selected four countries (Belgium, Czech Republic, Italy and Norway), representing the four regions of Europe: West, East, South and North. In spring 2010 and 2011, 20 different types of vegetables were sampled in Belgium, Czech Republic, Italy and Norway. Perfluorinated carboxylic acids (PFCAs) were the main group of detected PFASs, with perfluorinated octanoic acid (PFOA) as the most abundant PFCA (with exception of samples from Czech Republic), followed by perfluorinated hexanoic acid and perfluorinated nonanoic acid. Dietary intake estimates for PFOA show only low human exposure due to vegetable consumption for adults and children, mostly governed by high intake of potatoes.
Schoonheid in water
In onze leefomgeving zijn in toenemende mate stoffen te vinden die traditioneel niet als verontreiniging worden beschouwd of eenvoudigweg niet bekend zijn. Zo zijn in het oppervlaktewater en grondwater restanten te vinden van geneesmiddelen, schoonmaakmiddelen, middelen voor persoonlijke hygiëne en stimulerende middelen. Omdat zulke nieuw opkomende stoffen niet gereguleerd zijn, worden ze niet in de gaten gehouden in reguliere monitoringsprogramma’s. In deze rede wordt ingegaan op de aanpak die de universiteit, samen met de waterbedrijven, hanteert voor de opsporing van stoffen die nieuwe bedreigingen voor de waterkwaliteit vormen, hun identifi catie en de betekenis van hun aanwezigheid voor de gezondheid van mens en ecosysteem. Eenmaal geïdentifi ceerd kunnen het gedrag van de stoffen in oppervlaktewater en grondwater, en hun effecten bestudeerd en voorspeld worden en nieuwe technieken voor verwijdering ervan worden ontworpen.