Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "de Vries, Saskia EJ"
Sort by:
Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice
Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope’s field of view, but calcium indicators are used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here, we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies, only a minority of 1 AP and 2 AP events were detected (often <10% and ~20–30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions. Neurons, the cells that make up the nervous system, transmit information using electrical signals known as action potentials or spikes. Studying the spiking patterns of neurons in the brain is essential to understand perception, memory, thought, and behaviour. One way to do that is by recording electrical activity with microelectrodes. Another way to study neuronal activity is by using molecules that change how they interact with light when calcium binds to them, since changes in calcium concentration can be indicative of neuronal spiking. That change can be observed with specialized microscopes know as two-photon fluorescence microscopes. Using calcium indicators, it is possible to simultaneously record hundreds or even thousands of neurons. However, calcium fluorescence and spikes do not translate one-to-one. In order to interpret fluorescence data, it is important to understand the relationship between the fluorescence signals and the spikes associated with individual neurons. The only way to directly measure this relationship is by using calcium imaging and electrical recording simultaneously to record activity from the same neuron. However, this is extremely challenging experimentally, so this type of data is rare. To shed some light on this, Huang, Ledochowitsch et al. used mice that had been genetically modified to produce a calcium indicator in neurons of the visual cortex and simultaneously obtained both fluorescence measurements and electrical recordings from these neurons. These experiments revealed that, while the majority of time periods containing multi-spike neural activity could be identified using calcium imaging microscopy, on average, less than 10% of isolated single spikes were detectable. This is an important caveat that researchers need to take into consideration when interpreting calcium imaging results. These findings are intended to serve as a guide for interpreting calcium imaging studies that look at neurons in the mammalian brain at the population level. In addition, the data provided will be useful as a reference for the development of activity sensors, and to benchmark and improve computational approaches for detecting and predicting spikes.
Sharing neurophysiology data from the Allen Brain Observatory
Nullius in verba (‘trust no one’), chosen as the motto of the Royal Society in 1660, implies that independently verifiable observations—rather than authoritative claims—are a defining feature of empirical science. As the complexity of modern scientific instrumentation has made exact replications prohibitive, sharing data is now essential for ensuring the trustworthiness of one’s findings. While embraced in spirit by many, in practice open data sharing remains the exception in contemporary systems neuroscience. Here, we take stock of the Allen Brain Observatory, an effort to share data and metadata associated with surveys of neuronal activity in the visual system of laboratory mice. Data from these surveys have been used to produce new discoveries, to validate computational algorithms, and as a benchmark for comparison with other data, resulting in over 100 publications and preprints to date. We distill some of the lessons learned about open surveys and data reuse, including remaining barriers to data sharing and what might be done to address these.
Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology
Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.
VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.
Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1.5 µm×1.5 µm×3 µm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/s. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 375 nm lateral and 750 nm axial resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On
Retinal ganglion cells are commonly classified as On-center or Off-center depending on whether they are excited predominantly by brightening or dimming within the receptive field. Here we report that many ganglion cells in the salamander retina can switch from one response type to the other, depending on stimulus events far from the receptive field. Specifically, a shift of the peripheral image--as produced by a rapid eye movement--causes a brief transition in visual sensitivity from Off-type to On-type for approximately 100 ms. We show that these ganglion cells receive inputs from both On and Off bipolar cells, and the Off inputs are normally dominant. The peripheral shift strongly modulates the strength of these two inputs in opposite directions, facilitating the On pathway and suppressing the Off pathway. Furthermore, we identify certain wide-field amacrine cells that contribute to this modulation. Depolarizing such an amacrine cell affects nearby ganglion cells in the same way as the peripheral image shift, facilitating the On inputs and suppressing the Off inputs. This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation.
Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1.5 µm×1.5 µm×3 µm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/s. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 375 nm lateral and 750 nm axial resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Hebb's Vision: The Structural Underpinnings of Hebbian Assemblies
In 1949, Donald Hebb proposed that groups of neurons that activate stereotypically form the organizational building blocks of perception, cognition, and behavior. Finding the structural underpinning of such assemblies has been technically challenging, due to a lack of large-scale structure-activity maps. Here, we analyze this relation using a novel dataset that links in vivo optical physiology to connectivity using postmortem electron microscopy (EM). From the fluorescence traces, we extract neural assemblies from higher-order correlations in neural activity. Physiologically, we show that these assemblies exhibit properties consistent with Hebb's theory, including more reliable responses to repeated natural movie inputs than size-matched random ensembles and superior decoding of visual stimuli. Structurally, we find that neurons that participate in assemblies are significantly more integrated into the structural network than those that do not. Contrary to Hebb's original prediction, we do not observe a marked increase in the strength of monosynaptic excitatory connections between cells participating in the same assembly. However, we find significantly stronger indirect feed-forward inhibitory connections targeting cells in other assemblies. These results show that assemblies can be useful components of perception, and, surprisingly, they are delineated by mutual inhibition.
VIP interneurons selectively enhance weak but behaviorally-relevant stimuli
Vasoactive intestinal peptide-expressing (VIP) interneurons in cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Here, we show that VIP neurons in mouse primary visual cortex have complementary contrast tuning to SST neurons and respond synergistically to front-to-back visual motion and locomotion. Network modeling indicates that this VIP-SST mutual antagonism regulates the gain of cortex to achieve both sensitivity to behaviorally-relevant stimuli and network stability.
A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system. Footnotes * https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels