Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
64 result(s) for "du Toit, Lisa C."
Sort by:
Dexamethasone-Loaded, PEGylated, Vertically Aligned, Multiwalled Carbon Nanotubes for Potential Ischemic Stroke Intervention
The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.
The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis
Understanding cell–nanoparticle interactions is critical to developing effective nanosized drug delivery systems. Nanoparticles have already advanced the treatment of several challenging conditions including cancer and human immunodeficiency virus (HIV), yet still hold the potential to improve drug delivery to elusive target sites. Even though most nanoparticles will encounter blood at a certain stage of their transport through the body, the interactions between nanoparticles and blood cells is still poorly understood and the importance of evaluating nanoparticle hemocompatibility is vastly understated. In contrast to most review articles that look at the interference of nanoparticles with the intricate coagulation cascade, this review will explore nanoparticle hemocompatibility from a cellular angle. The most important functions of the three cellular components of blood, namely erythrocytes, platelets and leukocytes, in hemostasis are highlighted. The potential deleterious effects that nanoparticles can have on these cells are discussed and insight is provided into some of the complex mechanisms involved in nanoparticle–blood cell interactions. Throughout the review, emphasis is placed on the importance of undertaking thorough, all-inclusive hemocompatibility studies on newly engineered nanoparticles to facilitate their translation into clinical application.
Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation
Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as surface charge due to the acrylic chains. Additionally, these results suggested that the porous PAAm-g-CHT scaffold may act as a potential neural cell carrier.
Hydrogel Biomaterials for Application in Ocular Drug Delivery
There are many challenges involved in ocular drug delivery. These are a result of the many tissue barriers and defense mechanisms that are present with the eye; such as the cornea, conjunctiva, the blinking reflex, and nasolacrimal drainage system. This leads to many of the conventional ophthalmic preparations, such as eye drops, having low bioavailability profiles, rapid removal from the administration site, and thus ineffective delivery of drugs. Hydrogels have been investigated as a delivery system which is able to overcome some of these challenges. These have been formulated as standalone systems or with the incorporation of other technologies such as nanoparticles. Hydrogels are able to be formulated in such a way that they are able to change from a liquid to gel as a response to a stimulus; known as \"smart\" or stimuli-responsive biotechnology platforms. Various different stimuli-responsive hydrogel systems are discussed in this article. Hydrogel drug delivery systems are able to be formulated from both synthetic and natural polymers, known as biopolymers. This review focuses on the formulations which incorporate biopolymers. These polymers have a number of benefits such as the fact that they are biodegradable, biocompatible, and non-cytotoxic. The biocompatibility of the polymers is essential for ocular drug delivery systems because the eye is an extremely sensitive organ which is known as an immune privileged site.
A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications
Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost-effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique,several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery.
Ionic Liquids as Potential and Synergistic Permeation Enhancers for Transdermal Drug Delivery
Transdermal drug delivery systems (TDDS) show clear advantages over conventional routes of drug administration. Nonetheless, there are limitations to current TDDS which warrant further research to improve current TDD platforms. Spurred by the synthesis of novel biodegradable ionic liquids (ILs) and favorable cytotoxicity studies, ILs were shown to be a possible solution to overcome these challenges. Their favorable application in overcoming challenges ranging from synthesis, manufacture, and even therapeutic benefits were documented. In this review, said ILs are highlighted and their role in TDDS is reviewed in terms of (a) ILs as permeation enhancers (single agents or combined), (b) ILs in drug modification, and (c) ILs as active pharmaceutical ingredients. Furthermore, future combination of ILs with other chemical permeation enhancers (CPEs) is proposed and discussed.
Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions
A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application.
Linoleic Acid-Based Transferosomes for Topical Ocular Delivery of Cyclosporine A
Delivering high-molecular-weight hydrophobic peptides, such as cyclosporine A, across the corneal epithelium remains a challenge that is complicated by other physio-anatomical ocular structures that limit the ocular bioavailability of such peptides. Transferosomes have previously been used to improve transdermal permeability, and have the potential for improving the ocular corneal permeability of applicable drugs. In this study, transferosomes for the potential ocular delivery of cyclosporine A were investigated. Linoleic acid was evaluated for its effect on the stability of the transferosomes and was substituted for a portion of the cholesterol in the vesicles. Additionally, Span® 80 and Tween® 80 were evaluated for their effect on transferosome flexibility and toxicity to ocular cells as edge activators. Attenuated Total Reflectance–Fourier Transform Infrared spectroscopy (ATF-FTIR), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were used to evaluate the physicochemical parameters of the blank and the cyclosporine A-loaded transferosomes. Cyclosporine A release and corneal permeability were studied in vitro and in a New Zealand albino rabbit corneal model, respectively. The linoleic acid contributed to improved stability and the nano-size of the transferosomes. The Tween®-based formulation was preferred on the basis of a more favorable toxicity profile, as the difference in their corneal permeability was not significant. There was an initial burst release of cyclosporine A in the first 24 h that plateaued over one week. The Tween®-based formulation had a flux of 0.78 µg/cm2/h. The prepared transferosomes demonstrated biocompatibility in the ocular cell line, adequately encapsulated cyclosporine A, ensured the corneal permeability of the enclosed drug, and were stable over the period of investigation of 4 months at −20 °C.
Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy
The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation.
Bioplatform Fabrication Approaches Affecting Chitosan-Based Interpolymer Complex Properties and Performance as Wound Dressings
Chitosan can form interpolymer complexes (IPCs) with anionic polymers to form biomedical platforms (BMPs) for wound dressing/healing applications. This has resulted in its application in various BMPs such as gauze, nano/microparticles, hydrogels, scaffolds, and films. Notably, wound healing has been highlighted as a noteworthy application due to the remarkable physical, chemical, and mechanical properties enabled though the interaction of these polyelectrolytes. The interaction of chitosan and anionic polymers can improve the properties and performance of BMPs. To this end, the approaches employed in fabricating wound dressings was evaluated for their effect on the property–performance factors contributing to BMP suitability in wound dressing. The use of chitosan in wound dressing applications has had much attention due to its compatible biological properties. Recent advancement includes the control of the degree of crosslinking and incorporation of bioactives in an attempt to enhance the physicochemical and physicomechanical properties of wound dressing BMPs. A critical issue with polyelectrolyte-based BMPs is that their effective translation to wound dressing platforms has yet to be realised due to the unmet challenges faced when mimicking the complex and dynamic wound environment. Novel BMPs stemming from the IPCs of chitosan are discussed in this review to offer new insight into the tailoring of physical, chemical, and mechanical properties via fabrication approaches to develop effective wound dressing candidates. These BMPs may pave the way to new therapeutic developments for improved patient outcomes.