Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
209
result(s) for
"van Deursen, Jan"
Sort by:
Senolytic therapies for healthy longevity
2019
Clearing senescent cells with targeted drugs could combat age-associated disease The estimated “natural” life span of humans is ∼30 years, but improvements in working conditions, housing, sanitation, and medicine have extended this to ∼80 years in most developed countries. However, much of the population now experiences aging-associated tissue deterioration. Healthy aging is limited by a lack of natural selection, which favors genetic programs that confer fitness early in life to maximize reproductive output. There is no selection for whether these alterations have detrimental effects later in life. One such program is cellular senescence, whereby cells become unable to divide. Cellular senescence enhances reproductive success by blocking cancer cell proliferation, but it decreases the health of the old by littering tissues with dysfunctional senescent cells (SNCs). In mice, the selective elimination of SNCs (senolysis) extends median life span and prevents or attenuates age-associated diseases ( 1 , 2 ). This has inspired the development of targeted senolytic drugs to eliminate the SNCs that drive age-associated disease in humans.
Journal Article
Cellular senescence in aging and age-related disease: from mechanisms to therapy
2015
In this Review, Jan van Deursen and his colleagues discuss the recent progress in understanding the origin and identity of senescent cells in ageing and their contribution to age-related disease, in addition to discussing the potential for targeting these cells to counteract disease.
Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
Journal Article
Senescent intimal foam cells are deleterious at all stages of atherosclerosis
by
Campisi, Judith
,
Conover, Cheryl A.
,
Childs, Bennett G.
in
Animals
,
Atherosclerosis
,
Atherosclerosis - genetics
2016
Cells enter a state of senescence in response to certain stresses. Studying mouse models, Childs et al. examined the role of senescent lipid-loaded macrophages (so-called “foam cells”) in the pathogenesis of atherosclerosis. At early stages of atherosclerosis, senescent foam cells promoted the expression of inflammatory cytokines. At later stages, they promoted the expression of matrix metalloproteases implicated in the rupture of atherosclerotic plaque, which can lead to blood clots. Experimental removal of the senescent cells had beneficial effects at both stages of the disease. Science , this issue p. 472 Senescent macrophages contribute to early and late stages of atherosclerosis and are potential targets for therapy. Advanced atherosclerotic lesions contain senescent cells, but the role of these cells in atherogenesis remains unclear. Using transgenic and pharmacological approaches to eliminate senescent cells in atherosclerosis-prone low-density lipoprotein receptor–deficient ( Ldlr –/– ) mice, we show that these cells are detrimental throughout disease pathogenesis. We find that foamy macrophages with senescence markers accumulate in the subendothelial space at the onset of atherosclerosis, where they drive pathology by increasing expression of key atherogenic and inflammatory cytokines and chemokines. In advanced lesions, senescent cells promote features of plaque instability, including elastic fiber degradation and fibrous cap thinning, by heightening metalloprotease production. Together, these results demonstrate that senescent cells are key drivers of atheroma formation and maturation and suggest that selective clearance of these cells by senolytic agents holds promise for the treatment of atherosclerosis.
Journal Article
The role of senescent cells in ageing
2014
Cellular senescence has recently been shown to have roles in complex biological processes other than protection against cancer, and to represent a series of progressive and diverse cellular states after initial growth arrest; better understanding of mechanisms underlying its progression and of acute and chronic senescent cells may lead to new therapeutic strategies for age-related pathologies.
Cell senescence and the ageing process
Relatively little is known about the basic biology of senescent cells, particularly
in vivo
, but mounting evidence that cell senescence plays a role in ageing and age-related disease has stimulated interest in the topic. Here Jan van Deursen reviews recent work on the role of senescent cells in ageing. New findings suggest that senescence is not a static cellular endpoint. Rather, it is a dynamic series of cellular states linked to tissue repair and cancer as well as to ageing. van Deursen goes on to discuss how the new information that is emerging could be exploited to clear detrimental senescent cell populations selectively to improve healthy lifespan.
Cellular senescence has historically been viewed as an irreversible cell-cycle arrest mechanism that acts to protect against cancer, but recent discoveries have extended its known role to complex biological processes such as development, tissue repair, ageing and age-related disorders. New insights indicate that, unlike a static endpoint, senescence represents a series of progressive and phenotypically diverse cellular states acquired after the initial growth arrest. A deeper understanding of the molecular mechanisms underlying the multi-step progression of senescence and the development and function of acute versus chronic senescent cells may lead to new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Journal Article
Cyclin B2 and p53 control proper timing of centrosome separation
2014
Cyclins B1 and B2 are frequently elevated in human cancers and are associated with tumour aggressiveness and poor clinical outcome; however, whether and how B-type cyclins drive tumorigenesis is unknown. Here we show that cyclin B1 and B2 transgenic mice are highly prone to tumours, including tumour types where B-type cyclins serve as prognosticators. Cyclins B1 and B2 both induce aneuploidy when overexpressed but through distinct mechanisms, with cyclin B1 inhibiting separase activation, leading to anaphase bridges, and cyclin B2 triggering aurora-A-mediated Plk1 hyperactivation, resulting in accelerated centrosome separation and lagging chromosomes. Complementary experiments revealed that cyclin B2 and p53 act antagonistically to control aurora-A-mediated centrosome splitting and accurate chromosome segregation in normal cells. These data demonstrate a causative link between B-type cyclin overexpression and tumour pathophysiology, and uncover previously unknown functions of cyclin B2 and p53 in centrosome separation that may be perturbed in many human cancers.
Nam and van Deursen find that overexpression of either cyclin B1 or cyclin B2 in mice causes tumorigenesis and aneuploidy. They show that increased levels of these proteins lead to distinct chromosome segregation defects, and they identify a role for cyclin B2 in centrosome separation.
Journal Article
Skp2 Inhibits FOXO1 in Tumor Suppression through Ubiquitin-Mediated Degradation
2005
Forkhead transcription factors FOXO1 (FKHR), FOXO3a (FKHRL1), and FOXO4 (AFX) play a pivotal role in tumor suppression by inducing growth arrest and apoptosis. Loss of function of these factors due to phosphorylation and proteasomal degradation has been implicated in cell transformation and malignancy. However, the ubiquitin ligase necessary for the ubiquitination of the FOXO factors and the relevance of this regulation to tumorigenesis have not been characterized. Here we demonstrate that Skp2, an oncogenic subunit of the Skp1/Cul1/F-box protein ubiquitin complex, interacts with, ubiquitinates, and promotes the degradation of FOXO1. This effect of Skp2 requires Akt-specific phosphorylation of FOXO1 at Ser-256. Moreover, expression of Skp2 inhibits transactivation of FOXO1 and abolishes the inhibitory effect of FOXO1 on cell proliferation and survival. Furthermore, expression of the FOXO1 protein is lost in a mouse lymphoma model, where Skp2 is overexpressed. These data suggest that the Skp2-promoted proteolysis of FOXO1 plays a key role in tumorigenesis.
Journal Article
B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets
2015
B7-H3 is a cell surface molecule in the immunoglobulin superfamily that is frequently upregulated in response to autoantigens and pathogens during host T cell immune responses. However, B7-H3's role in the differential regulation of T cell subsets remains largely unknown. Therefore, we constructed a new B7-H3 deficient mouse strain (B7-H3 KO) and evaluated the functions of B7-H3 in the regulation of Th1, Th2, and Th17 subsets in experimental autoimmune encephalomyelitis (EAE), experimental asthma, and collagen-induced arthritis (CIA); these mouse models were used to predict human immune responses in multiple sclerosis, asthma, and rheumatoid arthritis, respectively. Here, we demonstrate that B7-H3 KO mice have significantly less inflammation, decreased pathogenesis, and limited disease progression in both EAE and CIA mouse models when compared with littermates; these results were accompanied by a decrease in IFN-γ and IL-17 production. In sharp contrast, B7-H3 KO mice developed severe ovalbumin (OVA)-induced asthma with characteristic infiltrations of eosinophils in the lung, increased IL-5 and IL-13 in lavage fluid, and elevated IgE anti-OVA antibodies in the blood. Our results suggest B7-H3 has a costimulatory function on Th1/Th17 but a coinhibitory function on Th2 responses. Our studies reveal that B7-H3 could affect different T cell subsets which have important implications for regulating pathogenesis and disease progression in human autoimmune disease.
Journal Article
Senescent cells limit p53 activity via multiple mechanisms to remain viable
2022
Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these,
Mdm2, Rnase4
, and
Ang
act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage.
MDM2
and
RNASE4
transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.
To develop therapeutics that selectively eliminate pathological senescent cells it is important to understand their survival mechanisms. Here, the authors show that senescent cells manage to survive by keeping p53 activity in check through multiple mechanisms, including inhibitory mechanisms that involve p53 binding to ribonucleases.
Journal Article
Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation
by
van Ree, Janine H.
,
Hamada, Masakazu
,
van Deursen, Willemijn H.
in
Animals
,
Binding
,
Binding sites
2016
Cyclin A2 activates the cyclin-dependent kinases Cdk1 and Cdk2 and is expressed at elevated levels from S phase until early mitosis. We found that mutant mice that cannot elevate cyclin A2 are chromosomally unstable and tumor-prone. Underlying the chromosomal instability is a failure to up-regulate the meiotic recombination 11 (Mre11) nuclease in S phase, which leads to impaired resolution of stalled replication forks, insufficient repair of double-stranded DNA breaks, and improper segregation of sister chromosomes. Unexpectedly, cyclin A2 controlled Mre11 abundance through a C-terminal RNA binding domain that selectively and directly binds Mre11 transcripts to mediate polysome loading and translation. These data reveal cyclin A2 as a mechanistically diverse regulator of DNA replication combining multifaceted kinase-dependent functions with a kinase-independent, RNA binding–dependent role that ensures adequate repair of common replication errors.
Journal Article
Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan
by
Seaburg, Lauren
,
Reyes, Santiago
,
van Ree, Janine H.
in
631/208/211
,
692/420/2489/1381/1286
,
692/699/67
2013
The amount of the BubR1 checkpoint protein declines with age in mouse models, suggesting that it has a role in ageing. Van Deursen and colleagues reveal that expressing a BubR1 transgene in mice reduces tumorigenesis and aneuploidy, and delays ageing-related phenotypes.
The
BubR1
gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule–kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule–kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.
Journal Article