Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "van Enckevort Esther"
Sort by:
Building Expertise on FAIR Through Evolving Bring Your Own Data (BYOD) Workshops: Describing the Data, Software, and Management-focused Approaches and Their Evolution
Since 2014, “Bring Your Own Data” workshops (BYODs) have been organised to inform people about the process and benefits of making resources Findable, Accessible, Interoperable, and Reusable (FAIR, and the FAIRification process). The BYOD workshops’ content and format differ depending on their goal, context, and the background and needs of participants. Data-focused BYODs educate domain experts on how to make their data FAIR to find new answers to research questions. Management-focused BYODs promote the benefits of making data FAIR and instruct project managers and policy-makers on the characteristics of FAIRification projects. Software-focused BYODs gather software developers and experts on FAIR to implement or improve software resources that are used to support FAIRification. Overall, these BYODs intend to foster collaboration between different types of stakeholders involved in data management, curation, and reuse (e.g. domain experts, trainers, developers, data owners, data analysts, FAIR experts). The BYODs also serve as an opportunity to learn what kind of support for FAIRification is needed from different communities and to develop teaching materials based on practical examples and experience. In this paper, we detail the three different structures of the BYODs and describe examples of early BYODs related to plant breeding data, and rare disease registries and biobanks, which have shaped the structure of the workshops. We discuss the latest insights into making BYODs more productive by leveraging our almost ten years of training experience in these workshops, including successes and encountered challenges. Finally, we examine how the participants’ feedback has motivated the research on FAIR, including the development of workflows and software.
BBMRI-ERIC’s contributions to research and knowledge exchange on COVID-19
During the COVID-19 pandemic, the European biobanking infrastructure is in a unique position to preserve valuable biological material complemented with detailed data for future research purposes. Biobanks can be either integrated into healthcare, where preservation of the biological material is a fork in clinical routine diagnostics and medical treatment processes or they can also host prospective cohorts or material related to clinical trials. The paper discussed objectives of BBMRI-ERIC, the European research infrastructure established to facilitate access to quality-defined biological materials and data for research purposes, with respect to the COVID-19 crisis: (a) to collect information on available European as well as non-European COVID-19-relevant biobanking resources in BBMRI-ERIC Directory and to facilitate access to these via BBMRI-ERIC Negotiator platform; (b) to help harmonizing guidelines on how data and biological material is to be collected to maximize utility for future research, including large-scale data processing in artificial intelligence, by participating in activities such as COVID-19 Host Genetics Initiative; (c) to minimize risks for all involved parties dealing with (potentially) infectious material by developing recommendations and guidelines; (d) to provide a European-wide platform of exchange in relation to ethical, legal, and societal issues (ELSI) specific to the collection of biological material and data during the COVID-19 pandemic.
The EU Child Cohort Network’s core data: establishing a set of findable, accessible, interoperable and re-usable (FAIR) variables
The Horizon2020 LifeCycle Project is a cross-cohort collaboration which brings together data from multiple birth cohorts from across Europe and Australia to facilitate studies on the influence of early-life exposures on later health outcomes. A major product of this collaboration has been the establishment of a FAIR (findable, accessible, interoperable and reusable) data resource known as the EU Child Cohort Network. Here we focus on the EU Child Cohort Network’s core variables. These are a set of basic variables, derivable by the majority of participating cohorts and frequently used as covariates or exposures in lifecourse research. First, we describe the process by which the list of core variables was established. Second, we explain the protocol according to which these variables were harmonised in order to make them interoperable. Third, we describe the catalogue developed to ensure that the network’s data are findable and reusable. Finally, we describe the core data, including the proportion of variables harmonised by each cohort and the number of children for whom harmonised core data are available. EU Child Cohort Network data will be analysed using a federated analysis platform, removing the need to physically transfer data and thus making the data more accessible to researchers. The network will add value to participating cohorts by increasing statistical power and exposure heterogeneity, as well as facilitating cross-cohort comparisons, cross-validation and replication. Our aim is to motivate other cohorts to join the network and encourage the use of the EU Child Cohort Network by the wider research community.
The de novo FAIRification process of a registry for vascular anomalies
Background Patient data registries that are FAIR—Findable, Accessible, Interoperable, and Reusable for humans and computers—facilitate research across multiple resources. This is particularly relevant to rare diseases, where data often are scarce and scattered. Specific research questions can be asked across FAIR rare disease registries and other FAIR resources without physically combining the data. Further, FAIR implies well-defined, transparent access conditions, which supports making sensitive data as open as possible and as closed as necessary. Results We successfully developed and implemented a process of making a rare disease registry for vascular anomalies FAIR from its conception—de novo. Here, we describe the five phases of this process in detail: (i) pre-FAIRification, (ii) facilitating FAIRification, (iii) data collection, (iv) generating FAIR data in real-time, and (v) using FAIR data. This includes the creation of an electronic case report form and a semantic data model of the elements to be collected (in this case: the “Set of Common Data Elements for Rare Disease Registration” released by the European Commission), and the technical implementation of automatic, real-time data FAIRification in an Electronic Data Capture system. Further, we describe how we contribute to the four facets of FAIR, and how our FAIRification process can be reused by other registries. Conclusions In conclusion, a detailed de novo FAIRification process of a registry for vascular anomalies is described. To a large extent, the process may be reused by other rare disease registries, and we envision this work to be a substantial contribution to an ecosystem of FAIR rare disease resources.
FAIR Genomes metadata schema promoting Next Generation Sequencing data reuse in Dutch healthcare and research
The genomes of thousands of individuals are profiled within Dutch healthcare and research each year. However, this valuable genomic data, associated clinical data and consent are captured in different ways and stored across many systems and organizations. This makes it difficult to discover rare disease patients, reuse data for personalized medicine and establish research cohorts based on specific parameters. FAIR Genomes aims to enable NGS data reuse by developing metadata standards for the data descriptions needed to FAIRify genomic data while also addressing ELSI issues. We developed a semantic schema of essential data elements harmonized with international FAIR initiatives. The FAIR Genomes schema v1.1 contains 110 elements in 9 modules. It reuses common ontologies such as NCIT, DUO and EDAM, only introducing new terms when necessary. The schema is represented by a YAML file that can be transformed into templates for data entry software (EDC) and programmatic interfaces (JSON, RDF) to ease genomic data sharing in research and healthcare. The schema, documentation and MOLGENIS reference implementation are available at https://fairgenomes.org.
Life course of retrospective harmonization initiatives: key elements to consider
Optimizing research on the developmental origins of health and disease (DOHaD) involves implementing initiatives maximizing the use of the available cohort study data; achieving sufficient statistical power to support subgroup analysis; and using participant data presenting adequate follow-up and exposure heterogeneity. It also involves being able to undertake comparison, cross-validation, or replication across data sets. To answer these requirements, cohort study data need to be findable, accessible, interoperable, and reusable (FAIR), and more particularly, it often needs to be harmonized. Harmonization is required to achieve or improve comparability of the putatively equivalent measures collected by different studies on different individuals. Although the characteristics of the research initiatives generating and using harmonized data vary extensively, all are confronted by similar issues. Having to collate, understand, process, host, and co-analyze data from individual cohort studies is particularly challenging. The scientific success and timely management of projects can be facilitated by an ensemble of factors. The current document provides an overview of the ‘life course’ of research projects requiring harmonization of existing data and highlights key elements to be considered from the inception to the end of the project.
Common conditions of use elements. Atomic concepts for consistent and effective information governance
Myriad policy, ethical and legal considerations underpin the sharing of biological resources, implying the need for standardised and yet flexible ways to digitally represent diverse ‘use conditions’. We report a core lexicon of terms that are atomic, non-directional ‘concepts of use’, called Common Conditions of use Elements. This work engaged biobanks and registries relevant to the European Joint Programme for Rare Diseases and aimed to produce a lexicon that would have generalised utility. Seventy-six concepts were initially identified from diverse real-world settings, and via iterative rounds of deliberation and user-testing these were optimised and condensed down to 20 items. To validate utility, support software and training information was provided to biobanks and registries who were asked to create Sharing Policy Profiles. This succeeded and involved adding standardised directionality and scope annotations to the employed terms. The addition of free-text parameters was also explored. The approach is now being adopted by several real-world projects, enabling this standard to evolve progressively into a universal basis for representing and managing conditions of use.
Getting your DUCs in a row - standardising the representation of Digital Use Conditions
Improving patient care and advancing scientific discovery requires responsible sharing of research data, healthcare records, biosamples, and biomedical resources that must also respect applicable use conditions. Defining a standard to structure and manage these use conditions is a complex and challenging task. This is exemplified by a near unlimited range of asset types, a high variability of applicable conditions, and differing applications at the individual or collective level. Furthermore, the specifics and granularity required are likely to vary depending on the ultimate contexts of use. All these factors confound alignment of institutional missions, funding objectives, regulatory and technical requirements to facilitate effective sharing. The presented work highlights the complexity and diversity of the problem, reviews the current state of the art, and emphasises the need for a flexible and adaptable approach. We propose Digital Use Conditions (DUC) as a framework that addresses these needs by leveraging existing standards, striking a balance between expressiveness versus ambiguity, and considering the breadth of applicable information with their context of use.