Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "van Hest, Liselotte P."
Sort by:
Germ-line and somatic DICER1 mutations in pineoblastoma
Germ-line RB - 1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identified a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: Eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1 -related tumours.
Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing
Recognition of individuals with a genetic predisposition to gastric cancer (GC) enables preventive measures. However, the underlying cause of genetic susceptibility to gastric cancer remains largely unexplained. We performed germline whole-exome sequencing on leukocyte DNA of 54 patients from 53 families with genetically unexplained diffuse-type and intestinal-type GC to identify novel GC-predisposing candidate genes. As young age at diagnosis and familial clustering are hallmarks of genetic tumor susceptibility, we selected patients that were diagnosed below the age of 35, patients from families with two cases of GC at or below age 60 and patients from families with three GC cases at or below age 70. All included individuals were tested negative for germline CDH1 mutations before or during the study. Variants that were possibly deleterious according to in silico predictions were filtered using several independent approaches that were based on gene function and gene mutation burden in controls. Despite a rigorous search, no obvious candidate GC predisposition genes were identified. This negative result stresses the importance of future research studies in large, homogeneous cohorts.
First estimates of diffuse gastric cancer risks for carriers of CTNNA1 germline pathogenic variants
BackgroundPathogenic variants (PV) of CTNNA1 are found in families fulfilling criteria for hereditary diffuse gastric cancer (HDGC) but no risk estimates were available until now. The aim of this study is to evaluate diffuse gastric cancer (DGC) risks for carriers of germline CTNNA1 PV.MethodsData from published CTNNA1 families were updated and new families were identified through international collaborations. The cumulative risk of DGC by age for PV carriers was estimated with the genotype restricted likelihood (GRL) method, taking into account non-genotyped individuals and conditioning on all observed phenotypes and genotypes of the index case to obtain unbiased estimates. A non-parametric (NP) and the Weibull functions were used to model the shape of penetrance function with the GRL. Kaplan-Meier incidence curve and standardised incidence ratios were also computed. A ‘leave-one-out’ strategy was used to evaluate estimate uncertainty.ResultsThirteen families with 46 carriers of PV were included. The cumulative risks of DGC at 80 years for carriers of CTNNA1 PV are 49% and 57%, respectively with the Weibull GRL and NP GRL methods. Risk ratios to population incidence reach particularly high values at early ages and decrease with age. At 40 years, they are equal to 65 and 833, respectively with the Weibull GRL and NP GRL.ConclusionThis is the largest series of CTNNA1 families that provides the first risk estimates of GC. These data will help to improve management and surveillance for these patients and support inclusion of CTNNA1 in germline testing panels.
Increased colorectal cancer risk during follow-up in patients with hyperplastic polyposis syndrome: a multicentre cohort study
Background and aimsPatients with hyperplastic polyposis syndrome (HPS) receive endoscopic surveillance to prevent malignant progression of polyps. However, the optimal treatment and surveillance protocol for these patients is unknown. The aim of this study was to describe the clinical and pathological features of a large HPS cohort during multiple years of endoscopic surveillance.MethodsDatabases were searched for patients with HPS, who were analysed retrospectively. Endoscopy reports and histopathology reports were collected to evaluate frequency of endoscopic surveillance and to obtain information regarding polyp and the presence of colorectal cancer (CRC).ResultsIn 77 patients with HPS, 1984 polyps were identified during a mean follow-up period of 5.6 years (range: 0.5–26.6). In 27 (35%) patients CRC was detected of which 22 (28.5%) at initial endoscopy. CRC was detected during surveillance in five patients (cumulative incidence: 6.5%) after a median follow-up time of 1.3 years and a median interval of 11 months. Of these interval CRCs, 4/5 were detected in diminutive serrated polyps (range: 4–16 mm). The cumulative risk of CRC under surveillance was 7% at 5 years. At multivariate logistic regression, an increasing number of hyperplastic polyps (OR 1.05, p=0.013) and serrated adenomas (OR 1.09, p=0.048) was significantly associated with CRC presence.ConclusionsHPS patients undergoing endoscopic surveillance have an increased CRC risk. The number of serrated polyps is positively correlated with the presence of CRC in HPS, thus supporting a ‘serrated pathway’ to CRC. To prevent malignant progression, adequate detection and removal of all polyps seems advisable. If this is not feasible, surgical resection should be considered.
Families with BAP1-Tumor Predisposition Syndrome in The Netherlands: Path to Identification and a Proposal for Genetic Screening Guidelines
Germline pathogenic variants in the BRCA1-associated protein-1 (BAP1) gene cause the BAP1-tumor predisposition syndrome (BAP1-TPDS, OMIM 614327). BAP1-TPDS is associated with an increased risk of developing uveal melanoma (UM), cutaneous melanoma (CM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), meningioma, cholangiocarcinoma, multiple non-melanoma skin cancers, and BAP1-inactivated nevi. Because of this increased risk, it is important to identify patients with BAP1-TPDS. The associated tumors are treated by different medical disciplines, emphasizing the need for generally applicable guidelines for initiating genetic analysis. In this study, we describe the path to identification of BAP1-TPDS in 21 probands found in the Netherlands and the family history at the time of presentation. We report two cases of de novo BAP1 germline mutations (2/21, 9.5%). Findings of this study combined with previously published literature, led to a proposal of guidelines for genetic referral. We recommend genetic analysis in patients with ≥2 BAP1-TPDS-associated tumors in their medical history and/or family history. We also propose to test germline BAP1 in patients diagnosed with UM <40 years, CM <18 years, MMe <50 years, or RCC <46 years. Furthermore, other candidate susceptibility genes for tumor types associated with BAP1-TPDS are discussed, which can be included in gene panels when testing patients.
Functional analysis of MSH2 unclassified variants found in suspected Lynch syndrome patients reveals pathogenicity due to attenuated mismatch repair
Background Lynch syndrome, an autosomal-dominant disorder characterised by high colorectal and endometrial cancer risks, is caused by inherited mutations in DNA mismatch repair (MMR) genes. Mutations fully abrogating gene function are unambiguously disease causing. However, missense mutations often have unknown functional implications, hampering genetic counselling. We have applied a novel approach to study three MSH2 unclassified variants (UVs) found in Dutch families with suspected Lynch syndrome. Methods The three mutations were recreated in the endogenous Msh2 gene in mouse embryonic stem cells by oligonucleotide-directed gene modification. The effect of the UVs on MMR activity was then tested using a set of functional assays interrogating the main MMR functions. Results We recreated and functionally tested three MSH2 UVs: MSH2-Y165D (c.493T>G), MSH2-Q690E (c.2068C>G) and MSH2-M813V (c.2437A>G). We observed reduced levels of MSH2-Y165D and MSH2-Q690E but not MSH2-M813V proteins. MSH2-M813V was able to support all MMR functions similar to wild-type MSH2, whereas MSH2-Y165D and MSH2-Q690E showed partial defects. Conclusions Based on the results from our functional assays, we conclude that the MSH2-M813V variant is not disease causing. The MSH2-Y165D and MSH2-Q690E variants affect MMR function and are therefore likely the underlying cause of familial cancer predisposition. Since the MMR defect is partial, these variants may represent low penetrance alleles.
Germ-line and somatic D1CER1 mutations in pineoblastoma
Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identified a germline D1CER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wildtype allele within the tumour. We set out to establish the prevalence of D1CER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: eighteen cases had not undergone previous testing for D1CER1 mutations; three patients were known carriers of germ-line D1CER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify D1CER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic D1CER1 mutations was also conducted on one case with a known germ-line D1CER1 mutation. From the eighteen PinBs, we identified four deleterious D1CER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic D1CER1 RNase IIIb mutations were identified. One PinB arising in a germline D1CER1 mutation carrier was found to have LOH. This Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, Australia study suggests that germ-line D1CER1 mutations make a clinically significant contribution to PinB, establishing D1CER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line D1CER1 mutation. The means by which the second allele is inactivated may differ from other D1CER1 -related tumours.
The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant
Purpose To evaluate the association between a previously published 313 variant–based breast cancer (BC) polygenic risk score (PRS 313 ) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes. Methods We included women of European ancestry with a prevalent first primary invasive BC ( BRCA1  = 6,591 with 1,402 prevalent CBC cases; BRCA2  = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS 313 and CBC risk. Results For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS 313 showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06–1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS 313 , HR = 1.15, 95% CI (1.07–1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS 313 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively. Conclusion The PRS 313 can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS 313 needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.
PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
Background Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. Methods We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. Results The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. Conclusions Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging.