Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "van Nimwegen, Kirsten J.M."
Sort by:
A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology
Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017
Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing
The substantial technological advancements in next-generation sequencing (NGS), combined with dropping costs, have allowed for a swift diffusion of NGS applications in clinical settings. Although several commercial parties report to have broken the $1000 barrier for sequencing an entire human genome, a valid cost overview for NGS is currently lacking. This study provides a complete, transparent and up-to-date overview of the total costs of different NGS applications. Cost calculations for targeted gene panels (TGP), whole exome sequencing (WES) and whole genome sequencing (WGS) were based on the Illumina NextSeq500, HiSeq4000, and HiSeqX5 platforms, respectively. To anticipate future developments, sensitivity analyses are performed. Per-sample costs were €1669 for WGS, € 792 for WES and €333 for TGP. To reach the coveted $1000 genome, not only is the long-term and efficient use of the sequencing equipment needed, but also large reductions in capital costs and especially consumable costs are also required. WES and TGP are considerably lower-cost alternatives to WGS. However, this does not imply that these NGS approaches should be preferred in clinical practice, since this should be based on the tradeoff between costs and the expected clinical utility of the approach chosen. The results of the present study contribute to the evaluation of such tradeoffs.
HEADROOM BEYOND THE QUALITY- ADJUSTED LIFE-YEAR: THE CASE OF COMPLEX PEDIATRIC NEUROLOGY
Objectives: The headroom method was introduced for the very early evaluation of the potential value of new technologies. It allows for establishing a ceiling price for technologies to still be cost-effective by combining the maximum effect a technology might yield, the maximum willingness-to-pay (WTP) for this effect, and potential downstream expenses and savings. Although the headroom method is QALY-based, not all innovations are expected to result in QALY gain. Methods: This study explores the feasibility and usefulness of the headroom method in the evaluation of technologies that are unlikely to result in QALY gain. This will be illustrated with the diagnostic trajectory of complex pediatric neurology (CPN). Results: Our headroom analysis showed a large room for improvement in the current diagnostic trajectory of CPN in terms of diagnostic yield. Combining this with a maximum WTP value for an additional diagnosis and the potential downstream expenses and savings, resulted in a total headroom of €15,028. This indicates that a new technology in this particular diagnostic trajectory, might be cost-effective as long as its costs do not exceed €15,028. Conclusions: The headroom method seems a useful tool in the very early evaluation of medical technologies, also in cases when immediate QALY gain is unlikely. It allows for allocating healthcare resources to those technologies that are most promising. It should be kept in mind, however, that the headroom assumes an optimistic scenario, and for that reason cannot guarantee future cost-effectiveness. It might be most useful for ruling out those technologies that are unlikely to be cost-effective.