Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "van Swelm, Rachel P. L."
Sort by:
The multifaceted role of iron in renal health and disease
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element–iron regulatory protein (IRE–IRP) system. In the kidney, iron transport mechanisms independent of the IRE–IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.Iron is essential for life but must be strictly regulated to avoid harmful effects. The authors discuss new insights into systemic and cellular iron handling with respect to renal physiology and pathology, current treatment practices and novel therapies for kidney disease.
Kidney tubule iron loading in experimental focal segmental glomerulosclerosis
Kidney iron deposition may play a role in the progression of tubulointerstitial injury during chronic kidney disease. Here, we studied the molecular mechanisms of kidney iron loading in experimental focal segmental glomerulosclerosis (FSGS) and investigated the effect of iron-reducing interventions on disease progression. Thy-1.1 mice were injected with anti-Thy-1.1 monoclonal antibody (mAb) to induce proteinuria. Urine, blood and tissue were collected at day (D)1, D5, D8, D15 and D22 after mAb injection. Thy-1.1 mice were subjected to captopril (CA), iron-deficient (ID) diet or iron chelation (deferoxamine; DFO). MAb injection resulted in significant albuminuria at all time points (p < 0.01). Kidney iron loading, predominantly in distal tubules, increased in time, along with urinary kidney injury molecule-1 and 24p3 concentration, as well as kidney mRNA expression of Interleukin-6 ( Il-6) and Heme oxygenase-1 ( Ho-1) . Treatment with CA, ID diet or DFO significantly reduced kidney iron deposition at D8 and D22 (p < 0.001) and fibrosis at D22 (p < 0.05), but not kidney Il-6 . ID treatment increased kidney Ho-1 (p < 0.001). In conclusion, kidney iron accumulation coincides with progression of tubulointerstitial injury in this model of FSGS. Reduction of iron loading halts disease progression. However, targeted approaches to prevent excessive kidney iron loading are warranted to maintain the delicate systemic and cellular iron balance.
Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis
Hemoglobinuria is associated with kidney injury in various hemolytic pathologies. Currently, there is no treatment available and its pathophysiology is not completely understood. Here we studied the potential detrimental effects of hemoglobin (Hb) exposure to the distal nephron (DN). Involvement of the DN in Hb kidney injury was suggested by the induction of renal hepcidin synthesis ( p  < 0.001) in mice repeatedly injected with intravenous Hb. Moreover, the hepcidin induction was associated with a decline in urinary kidney injury markers 24p3/NGAL and KIM1, suggesting a role for hepcidin in protection against Hb kidney injury. We demonstrated that uptake of Hb in the mouse cortical collecting duct cells (mCCD cl1 ) is mediated by multi-protein ligand receptor 24p3R, as indicated by a significant 90% reduction in Hb uptake ( p  < 0.001) after 24p3R silencing. Moreover, incubation of mCCD cl1 cells with Hb or hemin for 4 or 24 h resulted in hepcidin synthesis and increased mRNA expression of markers for oxidative, inflammatory and ER stress, but no cell death as indicated by apoptosis staining. A protective role for cellular hepcidin against Hb-induced injury was demonstrated by aggravation of oxidative, inflammatory and ER stress after 4 h Hb or hemin incubation in hepcidin silenced mCCD cl1 cells. Hepcidin silencing potentiated hemin-mediated cell death that could be diminished by co-incubation of Nec-1, suggesting that endogenous hepcidin prevents necroptosis. Combined, these results demonstrate that renal hepcidin synthesis protects the DN against hemin and hemoglobin-mediated injury.
Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice
Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP). Mice were given a single intraperitoneal dose of APAP (0-350 mg/kg bw) followed by 24 h urine collection. Doses of ≥275 mg/kg bw APAP resulted in hepatic centrilobular necrosis and significantly elevated plasma alanine aminotransferase (ALT) values (p<0.0001). Proteomic profiling resulted in the identification of 12 differentially excreted proteins in urine of mice with acute liver injury (p<0.001), including superoxide dismutase 1 (SOD1), carbonic anhydrase 3 (CA3) and calmodulin (CaM), as novel biomarkers for APAP-induced liver injury. Urinary levels of SOD1 and CA3 increased with rising plasma ALT levels, but urinary CaM was already present in mice treated with high dose of APAP without elevated plasma ALT levels. Importantly, we showed in human urine after APAP intoxication the presence of SOD1 and CA3, whereas both proteins were absent in control urine samples. Urinary concentrations of CaM were significantly increased and correlated well with plasma APAP concentrations (r = 0.97; p<0.0001) in human APAP intoxicants, who did not present with elevated plasma ALT levels. In conclusion, using this urinary proteomics approach we demonstrate CA3, SOD1 and, most importantly, CaM as potential human biomarkers for APAP-induced liver injury.
Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models
The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.
Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status
Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.
Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption
Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.
Investigating the Molecular Mechanisms of Renal Hepcidin Induction and Protection upon Hemoglobin-Induced Acute Kidney Injury
Hemolysis is known to cause acute kidney injury (AKI). The iron regulatory hormone hepcidin, produced by renal distal tubules, is suggested to exert a renoprotective role during this pathology. We aimed to elucidate the molecular mechanisms of renal hepcidin synthesis and its protection against hemoglobin-induced AKI. In contrast to known hepatic hepcidin induction, incubation of mouse cortical collecting duct (mCCDcl1 ) cells with IL-6 or LPS did not induce Hamp1 mRNA expression, whereas iron (FeS) and hemin significantly induced hepcidin synthesis (p andlt; 0.05). Moreover, iron/heme-mediated hepcidin induction in mCCDcl1 cells was caused by the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, as indicated by increased nuclear Nrf2 translocation and induced expression of Nrf2 downstream targets GCLM (p andlt; 0.001), NQO1 (p andlt; 0.001), and TXNRD1 (p andlt; 0.005), which could be prevented by the known Nrf2 inhibitor trigonelline. Newly created inducible kidney-specific hepcidin KO mice demonstrated a significant reduction in renal Hamp1 mRNA expression. Phenylhydrazine (PHZ)-induced hemolysis caused renal iron loading and oxidative stress in both wildtype (Wt) and KO mice. PHZ treatment in Wt induced inflammatory markers (IL-6, TNFα) but not Hamp1. However, since PHZ treatment also significantly reduced systemic hepcidin levels in both Wt and KO mice (both p andlt; 0.001), a dissection between the roles of systemic and renal hepcidin could not be made. Combined, the results of our study indicate that there are kidney-specific mechanisms in hepcidin regulation, as indicated by the dominant role of iron and not inflammation as an inducer of renal hepcidin, but also emphasize the complex interplay of various iron regulatory mechanisms during AKI on a local and systemic level. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Role of hepcidin in oxidative stress and cell death of cultured mouse renal collecting duct cells: protection against iron and sensitization to cadmium
The liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5–5 μmol/l) and/or Fe2+ (50–100 μmol/l) for 4–24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.
Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers
Adhering to a low carbohydrate (CHO) high fat (LCHF) diet can alter markers of iron metabolism in endurance athletes. This investigation examined the re-introduction of CHO prior to, and during exercise on the iron-regulatory response to exercise in a homogenous (in regard to serum ferritin concentration) group of athletes adapted to a LCHF diet. Parallel groups design. Three weeks prior to the exercise trials, twenty-three elite race walkers adhered to either a CHO-rich (n=14) or LCHF diet (n=9). A standardised 19–25km race walk was performed while athletes were still adhering to their allocated dietary intervention (Adapt). A second test was performed three days later, where all athletes were placed on a high CHO diet (CHO Restoration). Venous blood samples were collected pre-, post- and 3h post-exercise and measured for interleukin-6 (IL-6) and hepcidin-25. The post-exercise IL-6 increase was greater in LCHF (p<0.001) during both the Adapt (LCHF: 13.1-fold increase; 95% CI: 5.6–23.0, CHO: 8.0-fold increase; 5.1–11.1) and CHO Restoration trials (LCHF: 18.5-fold increase; 10.9–28.9, CHO: 6.3-fold increase; 3.9–9.5); outcomes were not different between trials (p=0.84). Hepcidin-25 concentrations increased 3h post-exercise (p<0.001), however, they did not differ between trials (p=0.46) or diets (p=0.84). The elevated IL-6 response in athletes adapted to a LCHF diet was not attenuated by an acute increase in exogenous CHO availability. Despite diet-induced differences in IL-6 response to exercise, post-exercise hepcidin levels were similar between diets and trials, indicating CHO availability has minimal influence on post-exercise iron metabolism.