Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
50 result(s) for "van de Borne, Philippe"
Sort by:
A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease
Severe aortic valve diseases (AVD) cause changes in heart sounds, making phonocardiogram (PCG) analyses challenging. This study presents a novel method for segmenting heart sounds without relying on an electrocardiogram (ECG), specifically targeting patients with severe AVD. Our algorithm enhances traditional Hidden Semi-Markov Models by incorporating signal envelope calculations and statistical tests to improve the detection of the first and second heart sounds (S1 and S2). We evaluated the method on the PhysioNet/CinC 2016 Challenge dataset and a newly acquired AVD-specific dataset. The method was tested on a total of 27,400 cardiac cycles. The proposed approach outperformed the existing methods, achieving a higher sensitivity and positive predictive value for S2, especially in the presence of severe heart murmurs. Notably, in patients with severe aortic stenosis, our proposed ECG-free method improved S2 sensitivity from 41% to 70%.
Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study
Non-invasive remote detection of cardiac and blood displacements is an important topic in cardiac telemedicine. Here we propose kino-cardiography (KCG), a non-invasive technique based on measurement of body vibrations produced by myocardial contraction and blood flow through the cardiac chambers and major vessels. KCG is based on ballistocardiography and measures 12 degrees-of-freedom (DOF) of body motion. We tested the hypothesis that KCG reliably assesses dobutamine-induced haemodynamic changes in healthy subjects. Using a randomized double-blinded placebo-controlled crossover study design, dobutamine and placebo were infused to 34 volunteers (25 ± 2 years, BMI 22 ± 2 kg/m², 18 females). Baseline recordings were followed by 3 sessions of increasing doses of dobutamine (5, 10, 20 μg/kg.min) or saline solution. During each session, stroke volume (SV) and cardiac output (CO) were determined by echocardiography and followed by a 90 s KCG recording. Measured linear accelerations and angular velocities were used to compute total Kinetic energy (iK) and power (Pmax). KCG sorted dobutamine infusion vs. placebo with 96.9% accuracy. Increases in SV and CO were correlated to iK (r = +0.71 and r = +0.8, respectively, p < 0.0001). Kino-cardiography, with 12-DOF, allows detecting dobutamine-induced haemodynamic changes with a high accuracy and present a major improvement over single axis ballistocardiography or seismocardiography.
Assessment of left ventricular twist by 3D ballistocardiography and seismocardiography compared with 2D STI echocardiography in a context of enhanced inotropism in healthy subjects
Ballistocardiography (BCG) and Seismocardiography (SCG) assess the vibrations produced by cardiac contraction and blood flow, respectively, by means of micro-accelerometers and micro-gyroscopes. From the BCG and SCG signals, maximal velocities (V Max ), integral of kinetic energy ( i K), and maximal power (P Max ) can be computed as scalar parameters, both in linear and rotational dimensions. Standard echocardiography and 2-dimensional speckle tracking imaging echocardiography were performed on 34 healthy volunteers who were infused with increasing doses of dobutamine (5–10–20 μg/kg/min). Linear V Max of BCG predicts the rates of left ventricular (LV) twisting and untwisting (both p  <  0.0001 ). The linear P Max of both SCG and BCG and the linear i K of BCG are the best predictors of the LV ejection fraction (LVEF) ( p  <  0.0001 ). This result is further confirmed by mathematical models combining the metrics from SCG and BCG signals with heart rate, in which both linear P Max and i K strongly correlate with LVEF (R = 0.7, p  <  0.0001 ). In this setting of enhanced inotropism, the linear V Max of BCG, rather than the V Max of SCG, is the metric which best explains the LV twist mechanics, in particular the rates of twisting and untwisting. P Max and i K metrics are strongly associated with the LVEF and account for 50% of the variance of the LVEF.
Investigating Cardiorespiratory Interaction Using Ballistocardiography and Seismocardiography—A Narrative Review
Ballistocardiography (BCG) and seismocardiography (SCG) are non-invasive techniques used to record the micromovements induced by cardiovascular activity at the body’s center of mass and on the chest, respectively. Since their inception, their potential for evaluating cardiovascular health has been studied. However, both BCG and SCG are impacted by respiration, leading to a periodic modulation of these signals. As a result, data processing algorithms have been developed to exclude the respiratory signals, or recording protocols have been designed to limit the respiratory bias. Reviewing the present status of the literature reveals an increasing interest in applying these techniques to extract respiratory information, as well as cardiac information. The possibility of simultaneous monitoring of respiratory and cardiovascular signals via BCG or SCG enables the monitoring of vital signs during activities that require considerable mental concentration, in extreme environments, or during sleep, where data acquisition must occur without introducing recording bias due to irritating monitoring equipment. This work aims to provide a theoretical and practical overview of cardiopulmonary interaction based on BCG and SCG signals. It covers the recent improvements in extracting respiratory signals, computing markers of the cardiorespiratory interaction with practical applications, and investigating sleep breathing disorders, as well as a comparison of different sensors used for these applications. According to the results of this review, recent studies have mainly concentrated on a few domains, especially sleep studies and heart rate variability computation. Even in those instances, the study population is not always large or diversified. Furthermore, BCG and SCG are prone to movement artifacts and are relatively subject dependent. However, the growing tendency toward artificial intelligence may help achieve a more accurate and efficient diagnosis. These encouraging results bring hope that, in the near future, such compact, lightweight BCG and SCG devices will offer a good proxy for the gold standard methods for assessing cardiorespiratory function, with the added benefit of being able to perform measurements in real-world situations, outside of the clinic, and thus decrease costs and time.
Prognostic Significance of Sympathetic Nervous System Activation in Pulmonary Arterial Hypertension
The sympathetic nervous system has been reported to be activated in pulmonary arterial hypertension (PAH). We investigated the prognostic significance of muscle sympathetic nervous system activity (MSNA) in PAH. Thirty-two patients with PAH were included in the study and underwent a measurement of MSNA over a 6-year period of time. They had undergone a concomitant evaluation of New York Heart Association (NYHA) functional class, a 6-minute walk distance (6MWD), an echocardiographic examination, and a right heart catheterization for diagnostic or reevaluation purposes. The median follow-up time was 20.6 months (interquartile range, 45.8 mo). Clinical deterioration was defined by listing for transplantation or death. Seventeen patients presented with clinical deterioration. As compared with the 15 others, they had an increased MSNA (80 +/- 12 vs. 52 +/- 18 bursts/min; P < 0.001) and heart rate (88 +/- 17 vs. 74 +/- 12 bpm; P = 0.01), a lower 6MWD (324 +/- 119 vs. 434 +/- 88 m; P < 0.01) and a deteriorated NYHA functional class (3.6 +/- 0.5 vs. 2.9 +/- 0.8; P < 0.001). The hemodynamic variables were not different. MSNA was directly related to heart rate and inversely to 6MWD. A univariate analysis revealed that increased MSNA and heart rate, NYHA class IV, lower 6MWD, and pericardial effusion were associated with subsequent clinical deterioration. A multivariate analysis showed that MSNA was an independent predictor of clinical deterioration. For every increase of 1 burst/minute, the risk of clinical deterioration during follow-up increased by 6%. Sympathetic nervous system activation is an independent predictor of clinical deterioration in pulmonary arterial hypertension.
Smartphone-Derived Seismocardiography: Robust Approach for Accurate Cardiac Energy Assessment in Patients with Various Cardiovascular Conditions
Seismocardiography (SCG), a method for measuring heart-induced chest vibrations, is gaining attention as a non-invasive, accessible, and cost-effective approach for cardiac pathologies, diagnosis, and monitoring. This study explores the integration of SCG acquired through smartphone technology by assessing the accuracy of metrics derived from smartphone recordings and their consistency when performed by patients. Therefore, we assessed smartphone-derived SCG’s reliability in computing median kinetic energy parameters per record in 220 patients with various cardiovascular conditions. The study involved three key procedures: (1) simultaneous measurements of a validated hardware device and a commercial smartphone; (2) consecutive smartphone recordings performed by both clinicians and patients; (3) patients’ self-conducted home recordings over three months. Our findings indicate a moderate-to-high reliability of smartphone-acquired SCG metrics compared to those obtained from a validated device, with intraclass correlation (ICC) > 0.77. The reliability of patient-acquired SCG metrics was high (ICC > 0.83). Within the cohort, 138 patients had smartphones that met the compatibility criteria for the study, with an observed at-home compliance rate of 41.4%. This research validates the potential of smartphone-derived SCG acquisition in providing repeatable SCG metrics in telemedicine, thus laying a foundation for future studies to enhance the precision of at-home cardiac data acquisition.
Kinocardiography Derived from Ballistocardiography and Seismocardiography Shows High Repeatability in Healthy Subjects
Recent years have witnessed an upsurge in the usage of ballistocardiography (BCG) and seismocardiography (SCG) to record myocardial function both in normal and pathological populations. Kinocardiography (KCG) combines these techniques by measuring 12 degrees-of-freedom of body motion produced by myocardial contraction and blood flow through the cardiac chambers and major vessels. The integral of kinetic energy (iK) obtained from the linear and rotational SCG/BCG signals, and automatically computed over the cardiac cycle, is used as a marker of cardiac mechanical function. The present work systematically evaluated the test–retest (TRT) reliability of KCG iK derived from BCG/SCG signals in the short term (<15 min) and long term (3–6 h) on 60 healthy volunteers. Additionally, we investigated the difference of repeatability with different body positions. First, we found high short-term TRT reliability for KCG metrics derived from SCG and BCG recordings. Exceptions to this finding were limited to metrics computed in left lateral decubitus position where the TRT reliability was moderate-to-high. Second, we found low-to-moderate long-term TRT reliability for KCG metrics as expected and confirmed by blood pressure measurements. In summary, KCG parameters derived from BCG/SCG signals show high repeatability and should be further investigated to confirm their use for cardiac condition longitudinal monitoring.
Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension
Association between calcium channel blockers (CCBs) or functional inhibitors of acid sphingomyelinase (FIASMAs) use and decreased mortality in people with COVID-19 has been reported in recent studies. Since amlodipine is both a CCB and a FIASMA, the aim of this study was to investigate the association between chronic amlodipine use and the survival of people with hypertension infected with COVID-19. This retrospective cohort study used data extracted from the medical records of adult inpatients with hypertension and laboratory-confirmed COVID-19 between 1 March 2020 and 31 August 2020 with definite outcomes (discharged from hospital or deceased) from Erasme Hospital (Brussels, Belgium). We re-analyzed the data of the retrospective cohort study using only the 184 patients (103 males, 81 females) with a mean age of 69.54 years (SD = 14.6) with hypertension. The fifty-five participants (29.9%) receiving a chronic prescription of amlodipine were compared with the 129 patients who did not receive a chronic prescription of amlodipine. Univariate and multivariate logistic regressions were used to explore the relationships between mortality and sex, age, comorbidities, smoking, and amlodipine status. Out of the 184 participants, 132 (71.7%) survived and 52 (28.3%) died. The mortality rates were, respectively, 12.73% (n = 7) and 34.88% (n = 45) for the amlodipine and non-amlodipine groups. Multivariate logistic regression was significant (Chi square (5) = 29.11; p < 0.0001). Chronic kidney disease and malignant neoplasm were significant predictors as well as amlodipine status. For chronic kidney disease and malignant neoplasm, the odds ratio with 95% confidence interval (95% CI) were, respectively, 2.16 (95% CI: 1.04–4.5; p = 0.039) and 2.46 (95% CI: 1.01–6.01; p = 0.047). For amlodipine status the odds ratio was 0.29 (95% CI: 0.11–0.74; p = 0.009). The result of the present study suggests that amlodipine may be associated with reduced mortality in people with hypertension infected with COVID-19. Further research and randomized clinical trials are needed to confirm the potential protective effect of amlodipine in people with hypertension infected with COVID-19.
Zofenopril: Blood pressure control and cardio-protection
Current hypertension guidelines suggest various strategies to reduce blood pressure levels, thereby reducing cardiovascular events: combinations of drugs with different mechanisms of action, such as an angiotensin converting enzyme inhibitors (ACEIs) and a diuretic, are the cornerstone of the modern treatment of hypertension, also as initial therapy. Among ACEIs, zofenopril has been shown to be effective in the management of hypertension both as monotherapy and in combination with a diuretic: zofenopril/hydrochlorothiazide fixed dose combination is particularly useful to improve treatment adherence through simplification of treatment regimen. Moreover, thanks to the sulfhydryl group, zofenopril has some peculiar properties (higher lipophilicity and tissue penetration, lower bradykinin-dependent effect, higher affinity for, and more persistent binding to, tissue ACE, significant antioxidant effect), which may account for the cardioprotective effects of the drug demonstrated in both pre-clinical studies and randomized clinical trials. The positive impact of zofenopril on clinical outcomes has been extensively documented by the SMILE program, including several clinical trials in patients with different conditions of myocardial ischemia treated with zofenopril: the results of the SMILE program, demonstrating the benefits of zofenopril vs. placebo and other ACEIs, emphasize the importance of a differentiated approach to patients with ischemic heart disease, based on a careful choice of the adopted agent, in order to improve the overall impact of pharmacological treatment on clinical outcomes.
Chemerin plasma levels are increased in COVID-19 patients and are an independent risk factor of mortality
BackgroundChemerin is an extracellular protein with chemotactic activities and its expression is increased in various diseases such as metabolic syndrome and inflammatory conditions. Its role in lung pathology has not yet been extensively studied but both known pro- and anti-inflammatory properties have been observed. The aim of our study was to evaluate the involvement of the chemerin/ChemR23 system in the physiopathology of COVID-19 with a particular focus on its prognostic value.MethodsBlood samples from confirmed COVID-19 patients were collected at day 1, 5 and 14 from admission to Erasme Hospital (Brussels – Belgium). Chemerin concentrations and inflammatory biomarkers were analyzed in the plasma. Blood cells subtypes and their expression of ChemR23 were determined by flow cytometry. The expression of chemerin and ChemR23 was evaluated on lung tissue from autopsied COVID-19 patients by immunohistochemistry (IHC).Results21 healthy controls (HC) and 88 COVID-19 patients, including 40 in intensive care unit (ICU) were included. Plasma chemerin concentration were significantly higher in ICU patients than in HC at all time-points analyzed (p<0.0001). Moreover, they were higher in deceased patients compared to survivors (p<0.05). Logistic univariate regression and multivariate analysis demonstrated that chemerin level at day 14 of admission was an independent risk factor for death. Accordingly, chemerin levels correlated with inflammatory biomarkers such as C-reactive protein and tumor necrosis factor α. Finally, IHC analysis revealed a strong expression of ChemR23 on smooth muscle cells and chemerin on myofibroblasts in advanced acute respiratory distress syndrome (ARDS).DiscussionIncreased plasma chemerin levels are a marker of severity and may predict death of COVID-19 patients. However, multicentric studies are needed, before chemerin can be considered as a biomarker of severity and death used in daily clinical practice. Further studies are also necessary to identify the precise mechanisms of the chemerin/ChemR23 system in ARDS secondary to viral pneumonia.