Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,746 result(s) for "yan, Weiwei"
Sort by:
Bismuth-Antimony Alloy Nanoparticles Embedded in 3D Hierarchical Porous Carbon Skeleton Film for Superior Sodium Storage
A composite film that features bismuth–antimony alloy nanoparticles uniformly embedded in a 3D hierarchical porous carbon skeleton is synthesized by the polyacrylonitrile-spreading method. The dissolved polystyrene is used as a soft template. The average diameter of the bismuth–antimony alloy nanoparticles is ~34.5 nm. The content of the Bi-Sb alloy has an impact on the electrochemical performance of the composite film. When the content of the bismuth–antimony alloy is 45.27%, the reversible capacity and cycling stability of the composite film are the best. Importantly, the composite film outperforms the bismuth–antimony alloy nanoparticles embedded in dense carbon film and the cube carbon nanobox in terms of specific capacity, cycling stability, and rate capability. The composite film can provide a discharge capacity of 322 mAh g−1 after 500 cycles at 0.5 A g−1, 292 mAh g−1 after 500 cycles at 1 A g−1, and 185 mAh g−1 after 2000 cycles at 10 A g−1. The carbon film prepared by the spreading method presents a unique integrated composite structure that significantly improves the structural stability and electronic conductivity of Bi-Sb alloy nanoparticles. The 3D hierarchical porous carbon skeleton structure further enhances electrolyte accessibility, promotes Na+ transport, increases reaction kinetics, and buffers internal stress.
FGFR families: biological functions and therapeutic interventions in tumors
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1–FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen‐activated protein kinase kinase/extracellular signal‐regulated kinase, phosphoinositide 3‐kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well‐known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Role of mTOR-Regulated Autophagy in Synaptic Plasticity Related Proteins Downregulation and the Reference Memory Deficits Induced by Anesthesia/Surgery in Aged Mice
Postoperative cognitive dysfunction increases mortality and morbidity in perioperative patients and has become a major concern for patients and caregivers. Previous studies demonstrated that synaptic plasticity is closely related to cognitive function, anesthesia and surgery inhibit synaptic function. In central nervous system, autophagy is vital to synaptic plasticity, homeostasis of synapticproteins, synapse elimination, spine pruning, proper axon guidance, and when dysregulated, is associated with behavioral and memory functions disorders. The mammalian target of rapamycin (mTOR) negatively regulates the process of autophagy. This study aimed to explore whether rapamycin can ameliorate anesthesia/surgery-induced cognitive deficits by inhibiting mTOR, activating autophagy and rising synaptic plasticity-related proteins in the hippocampus. Aged C57BL/6J mice were used to establish POCD models with exploratory laparotomy under isoflurane anesthesia. The Morris Water Maze (MWM) was used to measure reference memory after anesthesia and surgery. The levels of mTOR phosphorylation (p-mTOR), Beclin-1 and LC3-II were examined on postoperative days 1, 3 and 7 by western blotting. The levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD-95) in the hippocampus were also examined by western blotting. Here we showed that anesthesia/surgery impaired reference memory and induced the activation of mTOR, decreased the expression of autophagy-related proteins such as Beclin-1 and LC3-II. A corresponding decline in the expression of neuronal/synaptic, plasticity-related proteins such as SYN and PSD-95 was also observed. Pretreating mice with rapamycin inhibited the activation of mTOR and restored autophagy function, also increased the expression of SYN and PSD-95. Furthermore, anesthesia/surgery-induced learning and memory deficits were also reversed by rapamycin pretreatment. In conclusion, anesthesia/surgery induced mTOR hyperactivation and autophagy impairments, and then reduced the levels of SYN and PSD-95 in the hippocampus. An mTOR inhibitor, rapamycin, ameliorated anesthesia/surgery-related cognitive impairments by inhibiting the mTOR activity, inducing activation of autophagy, enhancing SYN and PSD-95 expression.
Active DHEA uptake in the prostate gland correlates with aggressive prostate cancer
Strategies for patient stratification and early intervention are required to improve clinical benefits for patients with prostate cancer. Here, we found that active DHEA utilization in the prostate gland correlated with tumor aggressiveness at early disease stages, and 3βHSD1 inhibitors were promising for early intervention. [3H]-labeled DHEA consumption was traced in fresh prostatic biopsies ex vivo. Active DHEA utilization was more frequently found in patients with metastatic disease or therapy-resistant disease. Genetic and transcriptomic features associated with the potency of prostatic DHEA utilization were analyzed to generate clinically accessible approaches for patient stratification. UBE3D, by regulating 3βHSD1 homeostasis, was discovered to be a regulator of patient metabolic heterogeneity. Equilin suppressed DHEA utilization and inhibited tumor growth as a potent 3βHSD1 antagonist, providing a promising strategy for the early treatment of aggressive prostate cancer. Overall, our findings indicate that patients with active prostatic DHEA utilization might benefit from 3βHSD1 inhibitors as early intervention.
Prognostic significance of peripheral CD8+CD28+ and CD8+CD28− T cells in advanced non-small cell lung cancer patients treated with chemo(radio)therapy
Background Noninvasive prognostic biomarkers are needed for advanced non-small cell lung cancer (NSCLC) patients with different histological types to identify cases with poor survival. Here, we investigated the prognostic values of peripheral CD8+CD28+ T cells and CD8+CD28− T cells in advanced NSCLC patients treated with chemo(radio)therapy and the impact of histological type on them. Methods Of 232 registered advanced NSCLC patients, 101 treatment-naïve individuals were eligible and included in our study. Flow cytometry was used to evaluate CD8+CD28+ T cells, CD8+CD28− T cells, CD4+ CD25 hi T cells, B cells, natural killer cells, γδT cells, and natural killer T cells in patients’ peripheral blood. Results The median follow-up time was 13.6 months. Fifty-nine (58.4%) patients died by the end of our study. Fifty-three of the 101 advanced NSCLC cases selected for our study were adenocarcinomas (ADs), and 48 were squamous cell carcinomas (SCCs). Multivariate analyses showed that increased levels of CD8+CD28+ T cells independently predicted favorable overall survival (OS) [hazard ratio (HR): 0.51, 95% confidence interval (CI) 0.30–0.89, P = 0.021] and progression-free survival (PFS) (HR: 0.66, 95% CI 0.37–0.93, P = 0.038) in ADs, but the prediction in SCCs was not statistically significant. In contrast, high levels of CD8+CD28− T cells independently predicted unfavorable OS (HR: 1.41, 95% CI 1.17–3.06, P = 0.035) and PFS (HR: 2.01, 95% CI 1.06–3.85, P = 0.029) in SCCs, but the prediction in ADs was not statistically significant. ADs had higher levels of CD4+CD25 hi T cells and CD8+CD28− T cells and lower NK cells (all P < 0.05) than SCCs. Conclusions Our findings uncovered the prognostic values of peripheral CD8+CD28+ T cells and CD8+CD28− T cells in advanced NSCLC patients treated with chemo(radio)therapy, which could help to identify patients with poor outcomes and refine treatment strategies.
Whole brain radiation therapy does not improve the overall survival of EGFR-mutant NSCLC patients with leptomeningeal metastasis
Background Leptomeningeal metastasis (LM) is a devastating and terminal complication of advanced non-small-cell lung cancer (NSCLC), especially in patients harboring epidermal growth factor receptor (EGFR) mutations. The role of whole brain radiation therapy (WBRT) in the treatment of EGFR-mutant NSCLC patients with LM is not conclusive. Therefore, we conducted a retrospective study to evaluate the therapeutic effect of WBRT in this setting. Methods EGFR-mutant NSCLC patients with LM, who had previously received treatment at the Shandong Cancer Hospital and Institute from July 2014 to March 2018 were reviewed retrospectively. LM was diagnosed by positive CSF cytology and/or leptomeningeal-enhanced magnetic resonance imaging (MRI). Survival was estimated using the Kaplan-Meier method. Results In total, 51 EGFR-mutated NSCLC patients with LM were eligible for analysis, subdivided into 26 in the WBRT group and 25 in the non-WBRT group. No significant differences were observed in intracranial ORR (15.4% vs. 16%, p  = 0.952) and DCR (34.7% vs. 28%, p  = 0.611) between the two groups. The median iPFS LM and OS LM for the entire cohort were 3.3 months (95% CI: 2.77–3.83) and 12.6 months (95% CI: 9.66–15.54), respectively. No difference in iPFS LM was observed between the WBRT and non-WBRT groups (median 3.9 vs. 2.8 months; HR = 0.506, p  = 0.052). The median OS LM was 13.6 months in the WBRT group, compared with 5.7 months in the non-WBRT group (HR = 0.454, p  = 0.022). Multivariate analyses of OS LM showed that KPS ≥ 80 at the time of LM diagnosis (HR = 0.428, 95% CI: 0.19–0.94; p  = 0.034) and the administration of EGFR-TKIs (HR = 0.258, 95% CI: 0.11–0.58; p  = 0.001) were independent predictors of survival, but WBRT (HR = 0.49, 95% CI: 0.24–1.01; p  = 0.54) was not. Toxicities associated with WBRT or other treatment were rare. Conclusion For EGFR-mutated NSCLC patients with LM, WBRT did not improve intracranial treatment response and survival statistically.
PRMT5-mediated FUBP1 methylation accelerates prostate cancer progression
Strategies beyond hormone-related therapy need to be developed to improve prostate cancer mortality. Here, we show that FUBP1 and its methylation were essential for prostate cancer progression, and a competitive peptide interfering with FUBP1 methylation suppressed the development of prostate cancer. FUBP1 accelerated prostate cancer development in various preclinical models. PRMT5-mediated FUBP1 methylation, regulated by BRD4, was crucial for its oncogenic effect and correlated with earlier biochemical recurrence in our patient cohort. Suppressed prostate cancer progression was observed in various genetic mouse models expressing the FUBP1 mutant deficient in PRMT5-mediated methylation. A competitive peptide, which was delivered through nanocomplexes, disrupted the interaction of FUBP1 with PRMT5, blocked FUBP1 methylation, and inhibited prostate cancer development in various preclinical models. Overall, our findings suggest that targeting FUBP1 methylation provides a potential therapeutic strategy for prostate cancer management.
NAP1L1 degradation by FBXW7 reduces the deubiquitination of HDGF-p62 signaling to stimulate autophagy and induce primary cisplatin chemosensitivity in nasopharyngeal carcinoma
Nucleosome assembly protein 1-like 1 (NAP1L1) has been implicated in promoting tumor cell proliferation. However, its role in regulating autophagy in tumors, including nasopharyngeal carcinoma (NPC), remains unclear. In this study, we observed that autophagy-inducing agents reduced NAP1L1 protein levels without affecting its mRNA expression. Reduced NAP1L1 enhanced autophagosome formation and maturation, thereby promoting cisplatin (DDP) chemosensitivity in both in vitro and in vivo NPC models. Mechanistically, reduced NAP1L1 impaired the recruitment of ubiquitin-specific protease 14 (USP14), limiting the deubiquitination of heparin-binding growth factor (HDGF) and decreasing HDGF protein levels. In turn, reduced HDGF suppressed USP14-mediated p62 deubiquitination, leading to further declines in p62 protein levels. Notably, the F-box and WD repeat domain-containing protein 7 (FBXW7), an inhibitory E3 ubiquitin ligase, directly interacted with and ubiquitinated NAP1L1, promoting its degradation. This degradation triggered NPC autophagy and enhanced DDP chemosensitivity by disrupting NAP1L1-induced HDGF/p62 signaling. Clinically, NAP1L1 protein expression was inversely correlated with FBXW7 levels in NPC tissue samples. Patients exhibiting high NAP1L1 and low FBXW7 levels had the poorest DDP chemosensitivity and survival outcomes. Our findings demonstrate that FBXW7-mediated NAP1L1 degradation suppresses HDGF-p62 signaling, thereby inducing autophagy and enhancing DDP chemosensitivity. These results underscore the potential of NAP1L1 and FBXW7 as therapeutic targets for NPC treatment.
A low-cost genomics workflow enables isolate screening and strain-level analyses within microbiomes
Earth’s environments harbor complex consortia of microbes that affect processes ranging from host health to biogeochemical cycles. Understanding their evolution and function is limited by an inability to isolate genomes in a high-throughput manner. Here, we present a workflow for bacterial whole-genome sequencing using open-source labware and the OpenTrons robotics platform, reducing costs to approximately $10 per genome. We assess genomic diversity within 45 gut bacterial species from wild-living chimpanzees and bonobos. We quantify intraspecific genomic diversity and reveal divergence of homologous plasmids between hosts. This enables population genetic analyses of bacterial strains not currently possible with metagenomic data alone.
Neutrophil extracellular traps predict poor response and prognosis in non-small cell lung cancer immunotherapy
High levels of immune cell traps linked to poor outcomes in lung cancer immunotherapy This study explored how structures called neutrophil extracellular traps (NETs)—web-like formations released by immune cells—affect outcomes for advanced non-small cell lung cancer (NSCLC) patients treated with immunotherapy. Researchers analyzed tumor tissue from 46 patients who received anti-PD-1/PD-L1 therapy, a common immunotherapy. They found that patients with higher NETs levels in their tumors had worse responses to treatment, shorter survival times (14.7 vs. 29.8 months), and faster cancer progression (8 vs. 20 months) compared to those with lower NETs. NETs were also linked to fewer cancer-fighting CD8+ T cells in the tumor area and more cancer-associated fibroblasts (CAFs), cells that support tumor growth and suppress immunity. Patients with many CD8+ T cells or CAFs clustered near NETs had particularly poor outcomes, suggesting NETs may block immune cells or collaborate with CAFs to weaken treatment effects. These findings highlight NETs as a potential biomarker to predict which patients might benefit less from immunotherapy. Targeting NETs, either alone or combined with therapies that counteract CAFs, could improve treatment success. This study provides new insights into how the tumor environment influences immunotherapy resistance and offers strategies to enhance patient outcomes.