Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
39
result(s) for
"[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]"
Sort by:
Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation
by
Halyna Volkova
,
Weiliang Ma
,
Pablo Alonso-González
in
639/624/400/1021
,
639/925/357/1018
,
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
2020
Phonon polaritons—light coupled to lattice vibrations—in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range
1
–
5
. However, the lack of tunability of their narrow and material-specific spectral range—the Reststrahlen band—severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V
2
O
5
enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain.
The spectral range of long-lived and confined phonon polaritons in a polar van der Waals crystal is shown to be tunable by intercalation of Na atoms, expanding their potential for nanophotonic applications in the mid-infrared domain.
Journal Article
Mechanics of elastomeric molecular composites
by
Clough, Jess M.
,
Brown, Hugh R.
,
Millereau, Pierre
in
Bonding strength
,
Breakage
,
Chemical bonds
2018
A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well–cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress–strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.
Journal Article
Challenges in nanofabrication for efficient optical metasurfaces
by
Christian Girard
,
Arnaud Arbouet
,
Adelin Patoux
in
639/624/399/1015
,
639/624/399/1099
,
639/624/400/1021
2021
Optical metasurfaces have raised immense expectations as cheaper and lighter alternatives to bulk optical components. In recent years, novel components combining multiple optical functions have been proposed pushing further the level of requirement on the manufacturing precision of these objects. In this work, we study in details the influence of the most common fabrication errors on the optical response of a metasurface and quantitatively assess the tolerance to fabrication errors based on extensive numerical simulations. We illustrate these results with the design, fabrication and characterization of a silicon nanoresonator-based metasurface that operates as a beam deflector in the near-infrared range.
Journal Article
Pairing mechanism in the ferromagnetic superconductor UCoGe
by
Taupin, Mathieu
,
Wu, Beilun
,
Aoki, Dai
in
639/766/119/1003
,
639/766/119/2793
,
639/766/119/997
2017
Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds. Here we show that in the ferromagnetic superconductor UCoGe, the field dependence of the pairing strength influences dramatically its macroscopic properties like the superconducting upper critical field, in a way that can be quantitatively understood. This provides a simple demonstration of the dominant role of ferromagnetic spin fluctuations in the pairing mechanism.
Experimental identification of pairing mechanism in unconventional superconductors is challenging. Here, Wu
et al
. show that the field dependence of the pairing strength influences the superconducting upper critical field in UCoGe, suggesting the dominant role of ferromagnetic spin fluctuations.
Journal Article
Neuromorphic spintronics
2020
Neuromorphic computing uses brain-inspired principles to design circuits that can perform computational tasks with superior power efficiency to conventional computers. Approaches that use traditional electronic devices to create artificial neurons and synapses are, however, currently limited by the energy and area requirements of these components. Spintronic nanodevices, which exploit both the magnetic and electrical properties of electrons, can increase the energy efficiency and decrease the area of these circuits, and magnetic tunnel junctions are of particular interest as neuromorphic computing elements because they are compatible with standard integrated circuits and can support multiple functionalities. Here, we review the development of spintronic devices for neuromorphic computing. We examine how magnetic tunnel junctions can serve as synapses and neurons, and how magnetic textures, such as domain walls and skyrmions, can function as neurons. We also explore spintronics-based implementations of neuromorphic computing tasks, such as pattern recognition in an associative memory, and discuss the challenges that exist in scaling up these systems.
This Review Article examines the development of spintronic devices for neuromorphic computing, exploring how magnetic tunnel junctions and magnetic textures can act as artificial neurons and synapses, as well as considering the challenges that exist in scaling up current systems.
Journal Article
Resonant tunneling driven metal-insulator transition in double quantum-well structures of strongly correlated oxide
2021
The metal-insulator transition (MIT), a fascinating phenomenon occurring in some strongly correlated materials, is of central interest in modern condensed-matter physics. Controlling the MIT by external stimuli is a key technological goal for applications in future electronic devices. However, the standard control by means of the field effect, which works extremely well for semiconductor transistors, faces severe difficulties when applied to the MIT. Hence, a radically different approach is needed. Here, we report an MIT induced by resonant tunneling (RT) in double quantum well (QW) structures of strongly correlated oxides. In our structures, two layers of the strongly correlated conductive oxide SrVO
3
(SVO) sandwich a barrier layer of the band insulator SrTiO
3
. The top QW is a marginal Mott-insulating SVO layer, while the bottom QW is a metallic SVO layer. Angle-resolved photoemission spectroscopy experiments reveal that the top QW layer becomes metallized when the thickness of the tunneling barrier layer is reduced. An analysis based on band structure calculations indicates that RT between the quantized states of the double QW induces the MIT. Our work opens avenues for realizing the Mott-transistor based on the wave-function engineering of strongly correlated electrons.
The metal-insulator transition is typically controlled by carrier accumulation or chemical doping. Here, the authors realize an alternative method based on resonant tunnelling in a double quantum well structure of strongly correlated oxides, which offers practical advantages over conventional methods.
Journal Article
Physical forces determining the persistency and centring precision of microtubule asters
by
Sallé, Jeremy
,
Dodin, Louise
,
Tanimoto, Hirokazu
in
Cell division
,
Cytoplasm
,
Embryonic growth stage
2018
In early embryos, microtubules form star-shaped aster structures that can measure up to hundreds of micrometres in size, and move at high speeds to find the geometrical centre of the cell. This process, known as aster centration, is essential for the fidelity of cell division and development, but how cells succeed in moving these large structures through their crowded and fluctuating cytoplasm remains unclear. Here, we demonstrate that the positional fluctuations of migrating sea urchin sperm asters are small, anisotropic, and associated with the stochasticity of dynein-dependent forces moving the aster. Using in vivo magnetic tweezers to directly measure aster forces inside cells, we derive a linear aster force–velocity relationship and provide evidence for a spring-like active mechanism stabilizing the transverse position of the asters. The large frictional coefficient and spring constant quantitatively account for the amplitude and growth characteristics of athermal positional fluctuations, demonstrating that aster mechanics ensure noise suppression to promote persistent and precise centration. These findings define generic biophysical regimes of active cytoskeletal mechanics underlying the accuracy of cell division and early embryonic development.
Journal Article
Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave
by
Suganuma Hiroki
,
Iwasa Yoshihiro
,
Matsuoka Hideki
in
Charge density waves
,
Conductivity
,
Electric fields
2021
In correlated electron materials, multiple electronic phases may appear next to each other in their phase diagram, and these can be tuned, for example, by applying static pressure or chemical doping1–3. These perturbations modify the subtle balance between the electron transfer energy and Coulomb repulsion between electrons. It is, therefore, tempting to explore whether new states of matter can be accessed through the direct tuning of their order parameters, for example, by driving a collective mode of the emergent phase. Here we demonstrate that the direct excitation of the amplitude mode of a charge density wave (amplitudon) by an intense terahertz pulse in a layered transition metal dichalcogenide compound, namely, 3R-Ta1+xSe2, leads to the appearance of an insulating-like metastable state. The formation dynamics of the metastable phase manifest in the opening of a gap in the optical conductivity spectrum, and we show that they synchronize with an oscillation of the amplitudon. This indicates the intimate interplay between the order parameters of the equilibrium charge density wave and the metastable states.Ultrafast optical excitation of a charge density wave leads to the formation of a metastable gapped state that synchronizes with the underlying correlated phase.
Journal Article
Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures
2019
Rapid progress in high-speed, densely packed electronic/photonic devices has brought unprecedented benefits to our society. However, this technology trend has in reverse led to a tremendous increase in heat dissipation, which degrades device performance and lifetimes. The scientific and technological challenge henceforth lies in efficient cooling of such high-performance devices. Here, we report on evaporative electron cooling in asymmetric Aluminum Gallium Arsenide/Gallium Arsenide (AlGaAs/GaAs) double barrier heterostructures. Electron temperature,
T
e
, in the quantum well (QW) and that in the electrodes are determined from photoluminescence measurements. At 300 K,
T
e
in the QW is gradually decreased down to 250 K as the bias voltage is increased up to the maximum resonant tunneling condition, whereas
T
e
in the electrode remains unchanged. This behavior is explained in term of the evaporative cooling process and is quantitatively described by the quantum transport theory.
Designing efficient integrated cooling solutions by controlling heat management in nanodevices remains a challenge. Here, the authors propose evaporative electron cooling in the AlGaAs/GaAs double barrier heterostructures quantum well achieving up to 50 K electron temperature reduction at 300 K.
Journal Article
Destabilization of hidden order in URu2Si2 under magnetic field and pressure
2020
The mystery of the hidden-order phase in the correlated electron paramagnet URu
2
Si
2
is still unsolved. To address this problem, one strategy is to search for clues in the subtle competition between this state and neighbouring magnetically ordered states. It is now well established that long-range antiferromagnetic order can be stabilized in this metal when it is under pressure and that a spin-density wave manifests when a magnetic field is applied along the easy magnetic axis c. However, the full boundaries of the hidden-order phase in the pressure–magnetic-field plane have not been determined so far. Here we present a systematic investigation of URu
2
Si
2
under combined high pressures and intense magnetic fields. The boundaries of the hidden-order, antiferromagnetic and spin-density-wave phases are mapped out, indicating an intricate three-dimensional phase diagram. We show that the field-induced spin-density-wave and hidden-order phases disappear in favour of antiferromagnetism at high pressure. Interestingly, a large number of phase boundaries are controlled by the field and pressure dependences of a single parameter. This gives new constraints for theories that model the electronic correlations and ordered phases in URu
2
Si
2
.
The nature of the hidden order in URu
2
Si
2
is still unknown. Here detailed measurements of the phase diagram of this material produce constraints for theories that aim to describe that phase.
Journal Article