Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41,722
result(s) for
"β cells"
Sort by:
Stimulus–Secretion Coupling Mechanisms of Glucose-Induced Insulin Secretion: Biochemical Discrepancies Among the Canonical, ADP Privation, and GABA-Shunt Models
Integration of old and recent experimental data consequences is needed to correct and help improve the hypothetical mechanism responsible for the stimulus–secretion coupling mechanism of glucose-induced insulin secretion. The main purpose of this review is to supply biochemical considerations about some of the metabolic pathways implicated in the process of insulin secretion. It is emphasized that glucose β-cells’ threshold to activate secretion (5 mM) might depend on the predominance of anaerobic glycolysis at this basal glucose concentration. This argues against the predominance of phosphoenolpyruvate (PEP) over mitochondrial pyruvate oxidation for the initiation of insulin secretion. Full quantitative and qualitative reproduction, except the threshold effect, of glucose-induced insulin release by a permeable methylated analog of succinic acid indicates that mitochondrial metabolism is enough for sustained insulin secretion. Mitochondrial PEP generation is skipped if the GABA-shunt pathway is exclusively coupled to the citric acid cycle, as proposed in the “GABA-shunt” model of stimulus–secretion coupling. Strong or maintained depolarization by KCl or sulfonylureas might induce the opening of β-cells Cx36 hemichannels, allowing the loss of adenine nucleotides and other metabolites, mimicking the effect of an excessive mitochondrial ATP demand. A few alterations of OxPhos (Oxidative Phosphorylation) regulation in human T2D islets have been described, but the responsible mechanism(s) is (are) not yet known. Finally, some experimental data arguing as proof of the relative irrelevance of the mitochondrial function in the insulin secretion coupling mechanism for the initiation and/or sustained stimulation of hormone release are discussed.
Journal Article
Pdia4 regulates β‐cell pathogenesis in diabetes: molecular mechanism and targeted therapy
2021
Loss of β‐cell number and function is a hallmark of diabetes. β‐cell preservation is emerging as a promising strategy to treat and reverse diabetes. Here, we first found that Pdia4 was primarily expressed in β‐cells. This expression was up‐regulated in β‐cells and blood of mice in response to excess nutrients. Ablation of Pdia4 alleviated diabetes as shown by reduced islet destruction, blood glucose and HbA1c, reactive oxygen species (ROS), and increased insulin secretion in diabetic mice. Strikingly, this ablation alone or in combination with food reduction could fully reverse diabetes. Conversely, overexpression of Pdia4 had the opposite pathophysiological outcomes in the mice. In addition, Pdia4 positively regulated β‐cell death, dysfunction, and ROS production. Mechanistic studies demonstrated that Pdia4 increased ROS content in β‐cells via its action on the pathway of Ndufs3 and p22
phox
. Finally, we found that 2‐β‐D‐glucopyranosyloxy1‐hydroxytrideca 5,7,9,11‐tetrayne (GHTT), a Pdia4 inhibitor, suppressed diabetic development in diabetic mice. These findings characterize Pdia4 as a crucial regulator of β‐cell pathogenesis and diabetes, suggesting Pdia4 is a novel therapeutic and diagnostic target of diabetes.
SYNOPSIS
Pancreatic β‐cell failure is associated with diabetes. Pdia4, a protein disulfide isomerase, is identified as a crucial regulator of β‐cell pathogenesis and diabetes.
Pdia4 interacts with Ndufs3 and p22
phox
and engages them in mitochondrial and cytosolic ROS production in β‐cells.
Pharmacological inhibition of Pdia4 disrupts the interaction of Pdia4 and its downstream partners, decreases ROS production, and ameliorates β‐cell failure and diabetes.
Graphical Abstract
Pancreatic β‐cell failure is associated with diabetes. Pdia4, a protein disulfide isomerase, is identified as a crucial regulator of β‐cell pathogenesis and diabetes.
Journal Article
Pancreatic β-Cell Identity Change through the Lens of Single-Cell Omics Research
2024
The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional β-cell mass. This decline is predominantly attributed to β-cell death, although recent findings suggest that the loss of β-cell identity may also contribute to β-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with β-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on β-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among β-cells and have facilitated the identification of distinct β-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of β-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased β-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on β-cell identity. Lastly, this review outlines the factors that may influence the identification of β-cell subpopulations when designing and performing a single-cell omics experiment.
Journal Article
From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes
2025
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Journal Article
Unraveling A‐β+ ketosis‐prone diabetes: An evolving diagnosis with an elusive pathogenesis
Since the discovery of insulin over a century ago, how we conceptualize, describe and treat diabetes has evolved, paving the way for the identification of distinct diabetes subgroups and individualized treatment options. Historically, the term ketosis‐prone diabetes (KPD) has comprised a group of diabetes syndromes characterized by severe pancreatic β‐cell dysfunction, but lacking the autoimmunity and irreversibility that underlies type 1 diabetes (T1D). Similarly, the defining feature of KPD—diabetic ketoacidosis—is uncharacteristic of type 2 diabetes (T2D). Initially, it was thought to be unique to Black populations, which led to early etiologic investigations narrowly focused on monogenic causes. However, it is now recognized that KPD occurs in diverse racial and ethnic groups and may be provoked by infection, leading to an expanded view of its pathogenesis. Here, we review these updated mechanistic views, highlight novel research tools being deployed to advance our understanding of KPD, and discuss implications of these data to inform our views on β‐cell biology.
Journal Article
Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus
2020
Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.
Journal Article
Pancreatic Beta-cell Dysfunction in Type 2 Diabetes
2023
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Journal Article
Roles of FoxM1‐driven basal β‐cell proliferation in maintenance of β‐cell mass and glucose tolerance during adulthood
2022
Aims/Introduction Whether basal β‐cell proliferation during adulthood is involved in maintaining sufficient β‐cell mass, and if so, the molecular mechanism(s) underlying basal β‐cell proliferation remain unclear. FoxM1 is a critical transcription factor which is known to play roles in ‘adaptive’ β‐cell proliferation, which facilitates rapid increases in β‐cell mass in response to increased insulin demands. Therefore, herein we focused on the roles of β‐cell FoxM1 in ‘basal’ β‐cell proliferation under normal conditions and in the maintenance of sufficient β‐cell mass as well as glucose homeostasis during adulthood. Materials and Methods FoxM1 deficiency was induced specifically in β‐cells of 8‐week‐old mice, followed by analyzing its short‐ (2 weeks) and long‐ (10 months) term effects on β‐cell proliferation, β‐cell mass, and glucose tolerance. Results FoxM1 deficiency suppressed β‐cell proliferation at both ages, indicating critical roles of FoxM1 in basal β‐cell proliferation throughout adulthood. While short‐term FoxM1 deficiency affected neither β‐cell mass nor glucose tolerance, long‐term FoxM1 deficiency suppressed β‐cell mass increases with impaired insulin secretion, thereby worsening glucose tolerance. In contrast, the insulin secretory function was not impaired in islets isolated from mice subjected to long‐term β‐cell FoxM1 deficiency. Therefore, β‐cell mass reduction is the primary cause of impaired insulin secretion and deterioration of glucose tolerance due to long‐term β‐cell FoxM1 deficiency. Conclusions Basal low‐level proliferation of β‐cells during adulthood is important for maintaining sufficient β‐cell mass and good glucose tolerance and β‐cell FoxM1 underlies this mechanism. Preserving β‐cell FoxM1 activity may prevent the impairment of glucose tolerance with advancing age. β‐cell FoxM1 plays a critical role in basal, low‐level β‐cell proliferation throughout adult periods from youth to middle age. Long‐term FoxM1 deficiency suppresses β‐cell mass increases with advancing age, and impaired insulin secretion. Inhibition of FoxM1‐driven basal β‐cell proliferation worsen glucose tolerance, indicating inability to maintain sufficient β‐cell mass.
Journal Article
Generation and application of novel hES cell reporter lines for the differentiation and maturation of hPS cell-derived islet-like clusters
2024
The significant advances in the differentiation of human pluripotent stem (hPS) cells into pancreatic endocrine cells, including functional β-cells, have been based on a detailed understanding of the underlying developmental mechanisms. However, the final differentiation steps, leading from endocrine progenitors to mono-hormonal and mature pancreatic endocrine cells, remain to be fully understood and this is reflected in the remaining shortcomings of the hPS cell-derived islet cells (SC-islet cells), which include a lack of β-cell maturation and variability among different cell lines. Additional signals and modifications of the final differentiation steps will have to be assessed in a combinatorial manner to address the remaining issues and appropriate reporter lines would be useful in this undertaking. Here we report the generation and functional validation of hPS cell reporter lines that can monitor the generation of INS
+
and GCG
+
cells and their resolution into mono-hormonal cells (
INS
eGFP
, INS
eGFP
/GCG
mCHERRY
) as well as β-cell maturation (
INS
eGFP
/MAFA
mCHERRY
) and function (
INS
GCaMP6
). The reporter hPS cell lines maintained strong and widespread expression of pluripotency markers and differentiated efficiently into definitive endoderm and pancreatic progenitor (PP) cells. PP cells from all lines differentiated efficiently into islet cell clusters that robustly expressed the corresponding reporters and contained glucose-responsive, insulin-producing cells. To demonstrate the applicability of these hPS cell reporter lines in a high-content live imaging approach for the identification of optimal differentiation conditions, we adapted our differentiation procedure to generate SC-islet clusters in microwells. This allowed the live confocal imaging of multiple SC-islets for a single condition and, using this approach, we found that the use of the N21 supplement in the last stage of the differentiation increased the number of monohormonal β-cells without affecting the number of α-cells in the SC-islets. The hPS cell reporter lines and the high-content live imaging approach described here will enable the efficient assessment of multiple conditions for the optimal differentiation and maturation of SC-islets.
Journal Article
miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development
2015
MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes.
Key messages
Overexpression of miR-375 in β-cells does not influence β-cell mass and function.
Increased α-cell mass in miR-375KO arises secondarily to loss of miR-375 in β-cells.
Only a small proportion of circulating miR-375 levels originates from β-cells.
Acute β-cell destruction results in measurable increases of miR-375 in the blood.
Circulating miR-375 levels are not a biomarker for pancreatic β-cell function.
Journal Article