Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3 result(s) for "المعادلات التفاضلية العادية"
Sort by:
المعادلات التفاضلية العادية
ذا الكتاب \"المعادلات التفاضلية العادية\" ويعرض هذا الكتاب أساسيات ومبادئ المعادلات التفاضلية العادية ويحتوى على عدد كبير من الأمثلة والتمارين في نهاية كل فصل وفى الوقت الذي يقدم هذا الكتاب خدمة للمهندسين فانه يقدم خدمة مماثله لطلاب كليات العلوم الذين هم بحاجه إلى مراجعة الدروس النظرية فى هذا الحقل الهام.
New Integral Transform: Ouideen Transform for Solving both Ordinary and Partial Differential Equations
We combine the Aboodh transform and Shehu transform to give another double transform which is called the double Aboodh-Shehu transform. This interesting transform reduces a linear partial differential equation with unknown function of two independent variables to an algebraic equation, which can then be solved by the formal rules of algebra, or by applying the double Aboodh-Shehu transform directly to the given equation.