Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Source
      Source
      Clear All
      Source
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "توزيع وايبل الاحتمالي"
Sort by:
فعالية استخدام توزيع وايبل الاحتمالي في التنبؤ
حاولنا في هذا البحث تطبيق أحد التوزيعات الاحتمالية المستمرة، ولاسيما توزيع وايبل الاحتمالي الذي يستخدم في دراسة الموثوقية (Reliability) والرقابة على الجودة (Quality Control) وفي التنبؤ، وقد قمنا بتطبيقه على بيانات فعلية لدرجات الحرارة العظمى والأمطار لمدينة دمشق خلال المدة(1988- 2007) وتوصلنا إلى الآتي: * كيفية تحويل توزيع وايبل الاحتمالي إلى الانحدار الخطي وكيفية تقدير معلمته؛ * إمكانية استخدام توزيع وايبل الاحتمالي المعمم في إيجاد الاحتمال المتوقع لدرجات الحرارة العظمى؛ * محاولة تطوير أساليب التقدير وتقانات التحليل الإحصائي.
Marshall-Olkin Extended Exponentiated Burr Type XII Distribution Properties and Applications
In this paper, a new continuous distribution, called exponentiated T-X family distribution is defined and studied. We introduce Marshall-Olkin Extended Exponentiated Burr Type XII (MOEE Burr-XII) distribution as application on exponentiated T-X family distribution. Marshall and Olkin (1997) provided a general method to introduce a parameter into a family of distributions, and discussed in details about the exponentiated family and Burr distribution. We study some of its structural properties including moments, moment generating function, incomplete moment, mean deviations, Renyi entropy, mode and quantial, We obtain the density function of the order statistics and their moments. The method of maximum likelihood is proposed for estimating the model parameters. We obtain the observed information matrix. The usefulness of the new model is illustrated by means of two real sets. We hope that this generalization may attract wider applications in reliability and lifetime data analysis.