Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "元素分析仪"
Sort by:
Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles
Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, and fluorescence spectra were also measured to identify the complexes. Elemental analysis showed that the compositions of these complexes were Tb(p-BrBA)3- H20, Tb(p-CIBA)3- 2H20, Tb(p-FBA)3- H20, Tb(o-FBA)3·2H20, Tb(o-CIBA)3· H20, and Tb(o-BrBA)3. H20, respectively. The monodispersed Ag@SiO2 core-shell nanoparticles with silica thicknesses of 10, 15, and 25 nm were success- fully prepared and characterized by transmission-electron microscopy. Fluorescence intensities of the complexes were detected before and after Ag@SiO2core-shell nanoparticles were added; the enhancement times were related to the silica-shell thick- ness. The fluorescence enhancement times were largest when the thickness of the silica shell was 25 nm. The mechanism may be attributed to the localized surface-plasmon resonance. Furthermore, the enhancement effect of terbium fluoro-benzoate complexes was the strongest in these complexes. This result may be attributed to the hydrogen bond between the hydroxyl on the surface of the silica shell and the fluorine atom.
Organic nitrogen in PM2.5 in Beijing
Nitrogenous species, as important chemical components in PM2.5, include organic nitrogen (ON) and inorganic nitrogen (IN), both of which have potential effects on human health, climate change and visibility degradation. In this study, we analyzed total nitrogen (TN) by CHN Elemental analyzer and inorganic nitrogen by ion chromatography (IC) respectively to obtain ON by calculating the difference between TN and IN. The results show that the mean ON concentrations in winter and summer are both 2.86 μg. m-a, ten times higher than other places reported on average. ON contributes about 20%- 30% to TN on average in both seasons, presenting higher contribution in summer. N:C ratios are much higher in summer than winter. ON sources or formation were strengthened by heavy PM2.5 pollution loads, especially sensitive to sulfate. ON concentrations are higher at night in the both seasons, however with distinguished day and night difference patterns influenced by relative humidity (RH) conditions. In winter, ON concentrations increase with RH on average through low RH values to high RH values. The variations are far larger than the ones caused by day and night difference. However in summer, day and night difference dominates the variations of ON concen- trations at low RH values, and RH conditions promote ON concentrations increase significantly only at high RH values. Dust related source and anthropogenic emission related secondary source are identified as important sources for ON. At heavy pollution loads, ON sources are more of secondary formation, possibly strengthened by combination influence of RH and acidity increase.
Quantitative analysis of elements (C, N, O, AI, Si and Fe) in polyamide with wavelength dispersive X-ray fluorescence spectrometry
A wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry combined with calibration curve method was estab- lished for simultaneously analyzing low-Z elements (C, N, O) and A1, Si, Fe in polyamide. To investigate the origin of plastic material causing deposition and blocking in instrument engines and pipelines, polyamide 6 (PA 6, an engineering plastic) was chosen as the study object on account of its common use in industry. The sample preparation with pressed powder disk has been developed for determination of six elements in PA 6. Pure Cu metal was used as the matrix and PA 6 was regarded as standard sample for C, N, O elements. PA 6 particles were firstly smashed to uniform powder in liquid nitrogen, and then mixed with inorganic standard powders (Fe203, A1203, SIO2, and Na2SiO3). The mixture was ground to obtain homogeneous calibration materials for WD-XRF analysis. The quantitative property of the calibration curve method for each element was re- liable. The limits of detection (S/N≤3) of C, N, O, A1, Si and Fe using WD-XRF were 249, 120, 101, 6.2, 3.3, and 1.8 μg/g, respectively. To confirm the accuracy of the proposed WD-XRF calibration curve method, inductively coupled plasma optical emission spectroscopy (ICP-OES) detection for A1, Si, Fe and elemental analyzer (EA) analysis for C, N, O were utilized. A good correlation of the WD-XRF results with the measurements of ICP-OES and EA was observed.