Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "冷轧"
Sort by:
Research and Development Trend of Shape Control for Cold Rolling Strip
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape con- trol system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll opti- mization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully indus- trial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general,the four expected development trends of shape control for cold roiling strip in the future are intelligentization, coordi- nation, refinement, and standardization. The proposed research provides new breakthrough directions for improv- ing shape quality.
A 2.5-dimensional Analytical Model of Cold Leveling for Plates with Transverse Wave Defects
Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be employed for transverse waves. In order to investigate the essential deformation law of leveling for plates with transverse waves, a 2.5-dimensional (2.5-D) analytical approach was proposed. In this model, the plate was transversely divided into some strips with equal width; the strips are considered to be in the state of plane strain and each group of adjacent strips are assumed to be deformation compatible under stress. After calculation, the bending deformation of each strip and the leveling effect of overall plate were obtained by comprehensive consideration of various strips along with the width. Bending of roller is a main approach to eliminate the transverse waves, which is widely accepted by the industry, but the essential effect of bending of roller on the deformation of plates and the calculation of bending of roller are unknown. According to the 2.5-D analytical model, it can be found that, for plates, it is neutral plane offsetting and middle plane elongation or contraction under inner stress that can effectively improve plate shape. Taking double side waves as an example, the appropriate values of bending of roller were obtained by the 2.5-D analytical model related to different initial unevenness, which was applicable to the current on-line adjusting of bending of roller in rolling industry.
Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill
It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flatness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill.
Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.
Effect of Chromium on Microstructure and Mechanical Properties of Cold Rolled Hot-dip Galvanizing DP450 Steel
Two cold rolled hot-dip galvanizing dual phase (DP) 450 steels with different amounts of chromium were designed and the effects of the chromium concentration and galvanizing processes on the microstructure and mechanical properties were also investigated. The results show that the experimental steels exhibit typical dual phase microstructure character. However, the ferrite phase of steel with higher chromium is more regular and its boundaries are clearer. Meanwhile, martensite austenite (MA) island in steel No. 2 is diffused and no longer distributes along the grain boundary as net or chain shape. More MA islands enriched with Cr element can be found in the ferrite grains, and the increment of Cr element improves the stablity of the austenite so that the austenite has been reserved in MA islands. In addition, the experimental steel with higher chromium exhibits better elongation, lower yield ratio and better formability. The mean hole expanding ratio of steels No. 1 and No. 2 is 161.70% and 192.70%, respectively.
Ultrafine Grained Duplex Structure Developed by ART-annealing in Cold Rolled Medium-Mn Steels
The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ultrafine granular ferrite and austenite duplex structure in cold rolled 0.1C-5Mn steel. The strong partitioning of manganese and carbon elements from ferrite to austenite was found during intercritical annealing by scanning transmission elec- tron microscopy (STEM) and X-ray diffraction (XRD). Strong effects of boundary characters on the austenite for- mation were indicated by austenite fast nucleation and growth in the high angle boundaries but sluggish nucleation and growth in the low angle boundaries. The ultrafine grained duplex structure in 0.1C-5Mn was resulted from the the sluggish Mn-diffusion and the extra high Gibbs free energy of ferrite phase. Based on the analysis of the micro- structure evolution, it was pointed out that the intercritical annealing of the medium Mn steels could be applied to fabricate an ultrafine duplex grained microstructure, which would be a promising approach to develop the 3rd genera- tion austomobile steels with excellent combination of strength and ductility.
Analysis of Sheet Curvature in Asymmetrical Cold Rolling
In asymmetric cold rolling, the workpiece is often bent downwards or upwards. A two-dimensional explicit dynamic finite element model with Arbitrary Lagrangian Eulerian (ALE) adaptive meshing technique has been employed to simulate asymmetrical sheet rolling, in which asymmetrical conditions are here due to different roll radii. To validate the simulation, the results of simulation and experiment are compared. Effects of asymmetry due to roll radii mismatch on the normal and shear distributions and on sheet curvature variations are discussed. An optimum roll radii ratio could be found to produce flat sheet. Trials were conducted to investigate the effectiveness of roll radii mismatch as an approach of sheet curvature control.
Effects of overaging temperature on the microstructure and properties of 600MPa cold-rolled dual-phase steel
C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C.
Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing
Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550℃. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550℃ to 700℃. The recrystallization texture was characterized by a major basal fiber and a minor {0113}〈2110〉 component. The strength of the recrystallization texture increased with increasing rolling reduction.
Transformation behaviors and superelasticity of Ti50Ni48Fe2 shape memory alloy subjected to cold-rolling and subsequent annealing
The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity reveal that both the cold-rolled and annealed specimens exhibit a B2→R→B19’two-stage martensitic transformation upon cooling and a B19’→B2 one-stage transformation upon heating, although the austenitic transformation temperature decreases with the increase of the annealing temperature. Tensile stress–strain curves show the critical stress for stress-induced martensite(rSIM)of Ti50Ni48Fe2 alloys decreases with the increase of annealing temperature due to the decrement of dislocation density caused by the recrystallization. As a result, the rSIM decreases. Upon a cold-rolling and annealing at 623 K for30 min, the Ti50Ni48Fe2 alloy exhibits excellent superelasticity with the maximum recoverable strain of 5.8 % at a loading strain of 7 %. In such a case, a complete superelasticity of 5 % can be obtained in the Ti50Ni48Fe2 alloy after deformation increasing to 15 cycles.