Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"凝固组织"
Sort by:
Microstructure evolution of eutectic Nb-24Ti-15Si-4Cr-2Al-2Hf alloy processed by directional solidification
by
Zhen Li Sai-Nan Yuan Li-Na Jia Bin Kong Zhen Hong Hu Zhang
in
Biomaterials
,
Chemistry and Materials Science
,
Crystals
2017
In this work, the near-eutectic Nb-24Ti-15Si-4Cr-2Al-2Hf(at%) alloy was directionally solidified at 1900 ℃ with withdrawal rates of 6, 18, 36, 50 mm·min^-1 and then heat-treated at 1450 ℃ for 12 h. The microstructure evolution was investigated. The results show that the microstructure of the directionally solidified(DS) alloy is composed of Nbss+Nb5Si3 eutectics within the whole withdrawal rate range, while the variation of rates makes a great difference on the solidification routes,the morphology and size of Nb_(ss)+Nb_5Si_3 eutectic cells.With the increase in withdrawal rates, the petaloid Nbss+Nb5Si3 eutectic cells transform into granular morphology. After the heat treatment, a mesh structure Nbssis formed gradually which isolates the Nb5Si3, and the phase boundaries become smoother in order to reduce the interfacial energy. Moreover, two kinds of Nb5Si3 exist in the heat-treated(HT) samples identified by crystal form and element composition, which are supposed as α-Nb5Si3 and γ-Nb5Si3, respectively. This study exhibits significant merits in guiding the optimization of Nb-Si-based alloys' mechanical properties.
Journal Article
Transformation Mechanism of (γ +γ′) and the Effect of Cooling Rate on the Final Solidification of U720Li Alloy
2017
Abstract The transformation mechanism of (γ +γ′) was studied by analyzing the microstructure and elemental distri- bution of the U720Li samples heated at 1250℃ and cooled at the rates in the range of 1-100℃/s. Although the (γ +γ′) is deemed to be formed by a eutectic reaction and has been called eutectic (γ +γ′), it was found in the present study that the (γ +γ′) precipitation begins with a peritectic reaction of (L + γ)γ′, and develops by the eutectic reaction of L (γ +γ′). The energy for the γ′ nucleation is low because the interfacial energy for the γ /γ′ interface is about one-tenth of the solid/liquid interface, and hence, the nucleation rate is high and the fine structure of (γ + γ′) is formed at the initial precipitation stage. The γ and γ′ in (γ + γ′) tend to grow into a lamellar structure because it is difficult for them to nucleate directly from the residual liquids, and hence, the γ′ precipitates naturally tend to grow divergently direction of the regions rich in AI and Ti, forming a fan-like structure of the (γ +γ′). As a result, the γ′ precipitates will coarsen finally because the space between them is enlarged. The solidification of the final residual liquids is a diffusion dependent process. When cooled at a higher rate, a higher degree of super cooling is reached and finally the solidification is finished by the pseudo- eutectic reaction of L → (γ + boride) and L→ (γ +γ′), which can absorb Zr and B. When cooled at a rate low enough, most of the residual liquids are consumed by the (γ +γ′) growth due to the sufficient diffusion, and the boride and Zr- bearing phase are precipitated at a quasi-equilibrium state. Under this condition, Ti is depleted at the (γ +γ′) growth front. However, the η-Ni3Ti phase is formed there occasionally due to the boride precipitation, because the compositions of the two phases are complementary.
Journal Article
Effects of Sb Content on Solidification Pathways and Grain Size of AZ91 Magnesium Alloy
by
Dan-Hui Hou Song-Mao Liang Rong-Shi Chen Chuang Dong En-Hou Han
in
Alloy solidification
,
Alloys
,
Antimony
2015
The phase constitution and solidification pathways of AZ91+xSb(x = 0, 0.1, 0.5, 1, in wt%) alloys were investigated through ways of microstructure observation, thermal analysis technique, and thermodynamic calculation. It was found that the non-equilibrium solidification microstructure of AZ91+xSb(x = 0.1, 0.5, 1) is composed of a-Mg matrix, b-Mg17Al12 phase, and intermetallic compound Mg3Sb2. The grain size of the alloys with different Sb contents was quantitatively determined by electron backscattered diffraction technique which shows no grain refinement in Sb-containing AZ91 alloy. Thermodynamic calculations are in reasonable agreement with thermal analysis results, showing that the Mg3Sb2 phase forms after a-Mg nucleation, thus impossible acts as heterogeneous nucleus for a-Mg dendrite. Besides,the solid fraction at dendrite coherency point(fDCPs) determined from thermal analysis decreases slightly with increasing Sb content, which is consistent with the fact that Sb does not refine the grain size of AZ91 alloy.
Journal Article
Solidification microstructure characteristics of Ti-44Al-4Nb-2Cr-0.1B alloy under various cooling rates during mushy zone
by
Peng Han Hong-Chao Kou Jie-Ren Yang Guang Yang Jin-Shan Li
in
Alloying elements
,
Alloys
,
Biomaterials
2016
Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B alloy was investigated.A vacuum induction heating device combining with temperature control system was used.The Ti-44Al-4Nb-2Cr-0.1B alloy solidified from superheated was melted to β phase with the cooling rates of 10,50,100,200,400 and 700 K·min~(-1),respectively.Results show that with the increase in cooling rate from 10 to 700 K·min~(-1),the colony size of α_2/γ lamella decreases from 1513 to48 urn and the solidification segregation significantly decreases.Also the content of residual B2 phase within α_2/γlamellar colony decreases with the increase in cooling rate.In addition,the alloy in local interdendritic regions would solidify in a hypo-peritectic way,which can be attributed to the solute redistribution and enrichment of Al element in solidification.
Journal Article
Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys
by
Wen-bin Xin Bo Song Chuan-gen Huang Ming-ming Song Gao-yang Song
in
Alloys
,
Arsenic
,
Arsenic base alloys
2015
The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidifica- tion microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt% As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200℃, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420℃, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutecfic morphology of Fe-10wt%As alloy quenched from 1200℃ is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.
Journal Article
Effects of Mg Addition on Inclusions Formation and Resultant Solidification Structure Changes of Ti-stabilized Ultra-pure Ferritic Stainless Steel
by
Ying-tie XU Zhao-ping CHEN Mao-tao GONG Da SHU Yue-mei TIAN Xiang-qian YUAN
in
Applied and Technical Physics
,
Density
,
disregistry
2014
The effects of Mg addition on the formation of nonmetallic inclusions and solidification structure of Ti-sta- bilized ultra-pure ferritie stainless steels were investigated by experimentally casting ingots with different composi tions. Thermodynamic analyses on the formation of complex inclusions after adding Mg into steels were carried out combined with the scanning electron microscopy energy dispersive spectrometry (SEM EDS) analysis. And the EDS analysis showed that in steel samples with Mg addition, a new spinel crystal phase combined with AI2O3- TiOx formed. It was also found that after Mg addition, the proportions of equiaxed grain zone of 409L, 4003, 439 and 443NT steels increased from 10.2%, 21.8%, 13.4% and 18.6% to 84.3%, 92.3%, 91.1% and 100.0%, respec tively. Since the planar disregistry between spinel and TiN is 5. 1%0, spinel could promote the precipitation of TiN and increase the number density of TiN inclusions in steel melts. The mechanism of solidification structure refinement after adding Mg into steels supposed that the complex inclusions of spinel and TiN in high number density enhanced columnar-to-equiaxed transition, since the planer disregistry between δ phase and spinel is 1.4 %.
Journal Article
Hot workability characteristics of Rene88DT superalloy with directionaUy solidified microstructure
2015
The hot deformation characteristics of Rene88DT superalloy with directionally solidified micro- structure produced by electroslag remelting continuous directionally solidification (ESR-CDS) were studied in the temperature range of 1,040-1,140 ℃ and strain rate range of 0.001-1.000 s-1 by hot compression tests. Flow curves for Rene88DT alloy with initial directionally solidified (DS) microstructure exhibit pronounced peak stresses at the early stage of deformation followed by the occurrence of dynamic softening phenomenon. Rene88DT alloy with DS micro- structure shows higher flow peak stresses compared with HIPed P/M superalloy FGH4096, but the disparities in peak stresses between ESR-CDSed Rene88DT and HIPed P/M superalloy FGH4096 reduce as temperature increases. The improvement of hot workability of DS alloy with columnar grains avoiding the maximum shear stress comes true. A hot deformation constitutive equation as a function of strain that describes the dependence of flow stress on strain rate and temperature is established. Hot deformation apparent acti- vation energy (Q) varies not only with the strain rate and temperature but also with strain. The strain rate sensitivity exponent (m) map is established at the strain of 0.8, which reveals that global dynamic recrystallization (DRX) shows a relatively high m value in a large strain compression. Optimum parameters are predicted in two regions: T = 1,100-1,130 ℃, ε = 0.100-1.000 s-1 and T = 1,080- 1,100 ℃, ε = 0.010-100 s-1, which is based on pro- cessing maps and deformation microstructure observations.
Journal Article
Inclusions and solidification structures of high pure ferritic stainless steels dual stabilized by niobium and titanium
by
Hong-Po Wang Li-Feng Sun Jun-Jie Shi Cheng-Jun Liu Mao-Fa Jiang Chi Zhang
in
Al2O3
,
Biomaterials
,
Carbon
2014
As the raw materials in the post process of rolling and heat treatment, ingots have great effects on the properties of the final products. Inclusions and solidification structures are the most important aspects of the quality of ingots. Niobium and titanium are usually used to react with carbon and nitrogen to improve the properties of ferritic stainless steels. In this research, combined with thermodynamic calculation, effects of niobium and titanium on the inclusions and solidification structures in three kinds of high pure ferritic stainless steels with different titanium additions were investigated by optical microscope(OM), scanning electron microscope(SEM), transmission electron microscope(TEM), and energy disperse spectrometer(EDS). Results show that Al2O3 and a few(Nb,Ti)N particles form when titanium addition is 0.01 %.Furthermore, inclusions are mainly Ti N and Al2O3–Ti Ox–Ti N duplex inclusions when titanium addition is more than0.10 %. Those two types of inclusions are in well distribution, and can afford nuclei to the solidification process.Therefore, the ratio of equiaxed zone increases with the increase of titanium addition. The ratio increases from42.1 % to 64.0 % with the titanium addition increasing from 0.01 % to 0.10 %, and it increases to 85.7 % when the titanium addition reaches 0.34 %.
Journal Article