Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "凝胶注模成型"
Sort by:
Gelcasting of titanium hydride to fabricate low-cost titanium
In this work, low-cost titanium was fabricated by gelcasting of titanium hydride powder. The effects of morphology and grain composition of powder raw material and solid loading on the rheological behavior of gelcasting slurry were studied. The degreasing, dehydriding and sintering behaviors of gelcasted green body were investigated by differential thermal analysis (DTA) and dilatometer. The results show that the solid loading of titanium hydride slurry reaches 50 vol%. Combination of dehydriding and sintering in one process accelerates the densification, and the relative sintered density of the final part achieves 96.5 %. In order to test the ability of gelcasting process for fabricating structural materials, a resin handle produced by 3D printing technology was used as a model and a titanium handle was successfully fabricated. Higher solid loading and better sinterability of titanium hydride powder promote manufacture of bulk titanium with high relative density, complex shape and well-defined microstructure.
Effects of process parameters on nonaqueous gelcasting for copper powder
An approach to fabricate sintered copper with high green strength and high sintered density using nonaqueous gelcasting technol- ogy is presented in this study. The effects of various gelcasting processing parameters such as monomer content, monomer/crosslinker ratio, initiator content, dispersant dosage, and temperature on the flexural strength of dried green bodies and the relative density of sintered bodies were studied to obtain better microstructures and properties. The appropriate process parameters obtained for copper gelcasting are as follows monomer content, 20vol%-30vol% (based on the total volume of reagents); monomer/crosslinker ratio, 10:1 to 20:1; initiator content, 3vol%-4vol% (based on the volume of the monomer); dispersant dosage, 1.5wt%-2.5wt% (based on the mass of the copper powder); and reaction temperature, 65-75℃.
Porous nickel-titanium alloy prepared by gel-casting
To explore the preparation of porous nickel- titanium alloy with excellent properties, larger size and complex shape, the premixed powder of Ni and Ti with atomic ratio of 1:1 was shaped by gel-casting. The effects of solids loading and the content of dispersant on flow ability of nickel-titanium slurry and the mechanical properties of nickel-titanium sintered body were studied. The drying models under different solids loading were also discussed. The results show that the viscosity of slurries significantly increases with an increase in solids loading. After a proper process of drying, the green body with complex shape is obtained. The sintered body with porosity rate reaching up to 49.5 % and compression strength reaching to 364.74 MPa could meet the basic demands of implant materials.