Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"初级视觉皮层"
Sort by:
Perceptual image quality mutual information assessment metric using of Gabor features
A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.
Journal Article
Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses
by
Bing-bing Guo Xiao-lin Zheng Zhen-gang Lu Xing Wang Zheng-qin Yin Wen-sheng Hou Ming Meng
in
Analysis
,
Datasets
,
Evaluation
2015
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
Journal Article
Effects of surround suppression on response adaptation of V1 neurons to visual stimuli
by
Peng LI Cai-Hong JIN San JIANG Miao-Miao LI Zi-Lu WANG Hui ZHU Cui-Yun CHEN Tian-Miao HUA
in
Adaptation
,
Adaptation, Physiological - physiology
,
Animals
2014
The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals.
Journal Article
Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions
2012
The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.
Journal Article