Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "动电位再活化"
Sort by:
Effect of Precipitation on Intergranular Corrosion Resistance of 430 Ferritic Stainless Steel
With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.