Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"协同机制"
Sort by:
Phenotype-dependent alteration of pathways and networks reveals a pure synergistic mechanism for compounds treating mouse cerebral ischemia
by
Peng-qian WANG Bing LI Jun LIU Ying-ying ZHANG Ya-nan YU Xiao-xu ZHANG Ye YUAN Zhi-li GUO Hong-li WU Hai-xia LI Hai-xia DANG Shan-shan GUO Zhong WANG
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2015
Aim: Our previous studies have showed that ursodeoxycholic acid (UA) and jasminoidin (JA) effectively reduce cerebral infarct volume in mice. In this study we explored the pure synergistic mechanism of these compounds in treatment of mouse cerebral ischemia, which was defined as synergistic actions specific for phenotype variations after excluding interference from ineffective compounds. Methods: Mice with focal cerebral ischemia were treated with UA, JA or a combination JA and UA (JU). Concha margaritifera (CM) was taken as ineffective compound. Cerebral infarct volume of the mice was determined, and the hippocampi were taken for microarray analysis. Particular signaling pathways and biological functions were enriched based on differentially expressed genes, and corresponding networks were constructed through Ingenuity Pathway Analysis. Results: In phenotype analysis, UA, JA, and JU significantly reduced the ischemic infarct volume with JU being superior to UA or JA alone, while CM was ineffective. As a result, 4 pathways enriched in CM were excluded. Core pathways in the phenotype-positive groups (UA or JA) were involved in neuronal homeostasis and neuropathology. JU-contributing pathways included all UA-contributing and the majority (71.7%) of JA-contributing pathways, and 10 new core pathways whose effects included inflammatory immunity, apoptosis and nervous system development. The functions of JU group included all functions of JA group, the majority (93.1%) of UA-contributing functions, and 3 new core functions, which focused on physiological system development and function. Conclusion: The pure synergism between UA and JA underlies 10 new core pathways and 3 new core functions, which are involved in inflammation, immune responses, apoptosis and nervous system development.
Journal Article
Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite
2015
Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interracial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10℃) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dis- persion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and --COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface ofrhodochrosite, thereby improving the flotation performance of the collector.
Journal Article
An EXAFS investigation of the mechanism of competitive sorption between Co(Ⅱ) and Ni(Ⅱ) at γ-alumina/solution interface
2017
Co(Ⅱ)and Ni(Ⅱ)are two common toxic heavy metals,and may simultaneously exist in contaminated water,soil,and sediment systems in Earth’s surface environment.Under this circumstance,competitive adsorption between the two metals may influence their migration,toxicity,and bioavailability.In this research,the competitive sorption of Co(Ⅱ)and Ni(Ⅱ)on γ-Al2O3was studied using both macroscopic sorption experiments and extended X-ray absorption fine structure(EXAFS)spectroscopy.Results suggest that Ni(Ⅱ)reduced the amount of Co(Ⅱ)sorption in a binary-solute system at pH 6.0.This is because both Co(Ⅱ)and Ni(Ⅱ)form inner-sphere surface complexes during sorption on γ-Al2O3and compete for the surface reactive sites.However,Co(Ⅱ)exhibited a negligible influence on sorption amount of Ni(Ⅱ)under the same conditions,which suggests Ni(Ⅱ)has a stronger affinity to alumina surface.At pH 7.5,Co(Ⅱ)and Ni(Ⅱ)sorption density were much higher than that at pH 6.0,but there no mutual competitive effect was observed.EXAFS analysis further revealed that formation of layered double-hydrated precipitates was the dominant sorption mechanism for both Co(Ⅱ)and Ni(Ⅱ)at pH 7.5.Because this type of sorption does not rely on surface reactive sites,there was no competition between Co(Ⅱ)and Ni(Ⅱ).This finding sheds light on risk assessment and remediation of Ni/Co pollution.
Journal Article
Immune regulation by CD52-expressing CD4 T cells
by
Ban-Hock Toh Tin Kyaw Peter Tipping Alex Bobik
in
Animals
,
Antibodies
,
Antibodies - pharmacology
2013
T-cell regulation by CD52-expressing CD4 T cells appears to operate by two different and possibly synergistic mechanisms. The first is by its release from the cell surface of CD4 T cells that express high levels of CD52 that then binds to the inhibitory sialic acid-binding immunoglobulin-like lectins-lO (Siglec-lO) receptor to attenuate effector T-cell activation by impairing phosphorylation of T-cell receptor associated Ick and zap-70. The second mechanism appears to be by crosslinkage of the CD52 molecules by an as yet unidentified endogenous ligand that is mimicked by a bivalent anti-CD52 antibody that results in their expansion.
Journal Article
Synergic Mechanism of an Organic Corrosion Inhibitor for Preventing Carbon Steel Corrosion in Chloride Solution
by
刘志勇 YU Lei LI Qingzhong
in
Advanced Materials
,
Carboxylic acids
,
Chemistry and Materials Science
2015
The inhibition effect of dimethylethanolamine(DMEA) and its composite with carboxylic acid was studied with the electrochemical tests. The experimental results indicate that DMEA is not a good inhibitor but the composite of DMEA with caprylic acid exhibits excellent inhibiting efficiency. The synergic mechanism of the organic corrosion inhibitors(OCIs) was studied with quantum chemical calculations. It is found that the DMEA forms a quaternary ammonium salt with the proton in carboxylic acid, and a cyclic complex formed between the salt and Fe may be responsible for the enhancement of inhibiting efficiency. The possible hydrogen bond formed between DMEA and carboxylic acid is not enough for the inhibiting effect. This work is helpful to proposing theoretical interpretation as well as developing a functional organic inhibitor to improve the durability of reinforced concrete contaminated with chloride.
Journal Article
Effects of Cu Contamination on GSH-Px (Glutathione Peroxidase) Activity of Earthworms ( Eisenia fetida ) in Soils
2015
[ Objective] This study aimed to investigate the effects of Cu contamination in soils on GSH-Px ( glutathione peroxidase) activity of earthworms ( Eisenia fetida). [ Method ] By artificial soil contamination method, changes in GSH-Px activity of earthworms under different Cu concentrations were investigated [ Result ] In the early exposure period, low-concentration Cu stress activated GSH-Px activity of earthworms to a certain extent; with the extension of extxqsure time and increase of Cu concentration, GSH-Px activity of earthworms showed a decreasing trend; however, under high-concentration Cu stress, there was no remarkable reg- ularity in the reduction of GSH-Px activity of earthworms. [ Conclusion] This study laid a solid foundation for further revealing the synergistic mechanism of antioxidant enzymes of earthworms.
Journal Article