Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "双电层电容"
Sort by:
Hierarchically porous carbon foams for electric double layer capacitors
The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehyde- cross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer-Emmett-Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.
Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes
Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology breakthrough in portable and renewable energy storage. Accordingly, much interest has been generated to pursue a comprehensive understanding of the fundamental yet elusive double layer structure at file electrode~electrolyte interface. In this paper, we carried out comprehensive molecular dynamics simulations to obtain a com- prehensive picture of how ion type, solvent properties, and charging conditions affect the EDL structure at the graphene electrode surface, and thereby its contribution to capacitance. We show that different symmetrical monovalent aqueous electrolytes M~X- (M~ = Na~, K~, Rb+, and Cs+; X- = F-, CI-, and I ) indeed have distinctive EDL structures. Larger ions, such as, Rb*, Cs*, C1, and I, undergo partial dehydration and penetrate through the first water layer next to the graphene electrode surfaces under charging. As such, the electrical potential distribution through the EDL strongly depends on the ion type. Interestingly, we further reveal that the water can play a critical role in determining the capacitance value. The change of dielectric constant of water in different electrolytes largely cancels out the variance in electric potential drop across the EDL of different ion type. Our simulation sheds new lights on how the interplay between solvent molecules and EDL structure cooperatively contributes to capacitance, which agrees with our experimental results well.
Molecular dynamics for the charging behavior of nanostructured electric double layer capacitors containing room temperature ionic liquids
The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistors. While room temperature ionic liquids (RTIL) are often used as the charge carrier in these new applications, the theoretical analyses are mostly based on conventional electrokinetic theories suitable for macroscopic electrochemical phenomena in aqueous solutions. In this work, we study the charging behavior of RTIL-EDLs using a coarse-grained molecular model and constant-potential molecular dynamics (MD) simulations. In stark contrast to the predictions of conventional theories, the MD results show oscillatory variations of ionic distributions and electrochemical properties in response to the separation between electrodes. The rate of EDL charging exhibits non-monotonic behavior revealing strong electrostatic correlations in RTIL under confinement.
Novel ionic liquid based electrolyte for double layer capacitors with enhanced high potential stability
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors (DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 mS cm-1 under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g-1. Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.