Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"地形高度"
Sort by:
Formation of the Summertime Ozone Valley over the Tibetan Plateau:The Asian Summer Monsoon and Air Column Variations
by
卞建春 严仁嫦 陈洪滨 吕达仁 Steven T. MASSIE
in
Atmospheric models
,
Atmospheric Sciences
,
Earth and Environmental Science
2011
The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon(ASM) and air column variations.Total ozone over the Tibetan Plateau in summer was ~33 Dobson units(DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009.Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere(UTLS) than over the non-ASM region.This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors(lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.
Journal Article
Proof of the Monotonicity of Grid Size and Its Application in Grid-Size Selection for Mesoscale Models
by
WANG Chengxin GAO Shouting RAN Lingkun LIANG Li
in
Air flow
,
Atmospheric Sciences
,
Boundary layers
2015
Terrain characteristics can be accurately represented in spectrum space. Terrain spectra can quantitatively reflect the effect of topographic dynamic forcing on the atmosphere. In wavelength space, topographic spectral energy decreases with decreasing wavelength, in spite of several departures. This relationship is approximated by an exponential function. A power law relationship between the terrain height spectra and wavelength is fitted by the least-squares method, and the fitting slope is associated with grid-size selection for mesoscale models. The monotonicity of grid size is investigated, and it is strictly proved that grid size increases with increasing fitting exponent, indicating that the universal grid size is determined by the minimum fitting exponent. An example of landslide-prone areas in western Sichuan is given, and the universal grid spacing of 4.1 km is shown to be a requirement to resolve 90% of terrain height variance for mesoscale models, without resorting to the parameterization of subgrid-scale terrain variance. Comparison among results of different simulations shows that the simulations estimate the observed precipitation well when using a resolution of 4.1 km or finer. Although the main flow patterns are similar, finer grids produce more complex patterns that show divergence zones, convergence zones and vortices. Horizontal grid size significantly affects the vertical structure of the convective boundary layer. Stronger vertical wind components are simulated for finer grid resolutions. In particular, noticeable sinking airflows over mountains are captured for those model configurations.
Journal Article
Cross-Tropopause Mass Exchange Associated with a Tropopause Fold Event over the Northeastern Tibetan Plateau
A springtime tropopause fold event, found to be related to a cold trough intrusion from the north, was detected in the northeastern Tibetan Plateau (TP) based on various observations. A nested high-resolution mesoscale model was employed to investigate the effect of orography on the stratosphere-troposphere exchange. The model was found to be able to capture plausible tropopause fold properties. The propagation of the tropopause fold changed significantly when the terrain height in the model was altered. However, decreasing the terrain height had no significant effect on the morphology of folds. When a fold passed over an elevated surface, a leeside jet stream and a layer of humid air in the middle troposphere tended to develop. This strong leeside descent of air masses and high mid-level potential instability (PI) could give rise to deep upward motions in the leeside and inject tropospheric air into the lower stratosphere. Besides, when the flow encounters an elevated surface, forced lifting together with mid-level PI can trigger deep convective motions on the windward slope. The troposphere to stratosphere transport was found to be persistent and almost stationary over the windward slope of the TP during the evolution of the fold.
Journal Article
Theoretical study of the effect of topographic height and width on generation of internal tides
by
Lü, Xianqing
,
Cao, Anzhou
,
Miao, Chunbao
in
Baroclinic field
,
Baroclinic mode
,
Barotropic mode
2014
Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology. Compared with previous theoretical works, this model is not restricted by weak topography, but provides an opportunity to examine the influence of topography. Ten typical cases are studied using different values of height and/or width of topography. By analyzing the baroclinic velocity fields, as well as their first eight baroclinic modes, it is found that the magnitude of baroclinic velocity increases and the vertical structure becomes increasingly complex as height increases or width decreases. However, when both height and width vary, while parameter s (the ratio of the topographic slope to the characteristic slope of the internal wave ray) remains invariant, the final pattern is influenced primarily by width. The conversion rate is studied and the results indicate that width determines where the conversion rate reaches a peak, and where it is positive or negative, whereas height affects only the magnitude. High and narrow topography is considerably more beneficial to converting energy from barotropic to baroclinic fields than low and wide topography. Furthermore, parameter s, which is an important non-dimensional parameter for internal tide generation, is not the sole parameter by which the baroclinic velocity fields and conversion rate are determined.
Journal Article
顾及地形因素的S-RVOG模型和PD相干最优算法联合反演植被高度
2015
针对极化干涉SAR植被高度反演中RVOG 模型未考虑地形影响,且三阶段算法受到地面相位估计误差和纯体相干性估计误差影响,提出了一种植被高度反演思路,采用考虑地形因素的SGRVOG 模型作为反演模型校正地形影响,同时引入PD 相干最优算法用于改善三阶段算法中直线拟合地表相位估计和纯体相干性估计精度.为验证算法的有效性,首先采用欧空局提供的PolSARpro软件模拟了不同地形坡度水平的PolInSAR数据进行仿真试验,然后采用德国宇航局提供的EGSAR 机载全极化SAR数据进行真实植被场景测试,并进行了定性和定量分析.结果表明,本文方法对于不同坡度水平数据,均能有效改善传统RVOG 反演模型中地形影响和三阶段算法自身误差影响,反演精度更高.
Journal Article