Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"气溶胶粒子"
Sort by:
Climatic change features of fog and haze in winter over North China and Huang-Huai Area
by
YIN ZhiCong WANG HuiJun GUO WenLi
in
Climate change
,
Earth and Environmental Science
,
Earth Sciences
2015
This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area (NCHH). It was found that the haze-prone period has changed from winter into a whole year, and the haze days (HD) in winter have increased significantly. The foggy days (FD) are half of HD. There are little difference on the number of days and trends of fog at various levels. The HD and FD show no obvious positive correlation until the 1980s. Fog has larger spatial scale, showing more in the south than in the north. Haze occurs mainly around large cities with a discrete distribution. In the background of weakened East Asian Winter Monsoon (EAWM) and sufficient particulate matter, the negative correlation be- tween haze and wind speed is weakened, but the positive correlation between haze and moisture conditions (precipitation and humidity) is significantly strengthened. In recent years, small wind and variability appear frequently. Meanwhile, as the stable source and strong moisture absorption of the aerosol particles, the moisture condition becomes one key control factor in the haze, especially wet haze with less visibility. In contrast, the FD presents a stable positive correlation with precipitation and relative humidity, but has no obvious negative correlation with wind speed.
Journal Article
On secondary new particle formation in China
2016
Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China new particle production has been observed at very high pollution levels (condensation sink about 0.1 s-1 ) m several megaclt es, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy.
Journal Article
The Characteristics of Atmospheric Ice Nuclei Measured at Different Altitudes in the Huangshan Mountains in Southeast China
2014
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.
Journal Article
Composition and mixing state of water soluble inorganic ions during hazy days in a background region of North China
by
LU YaLing CHI JianWei YAO Lan YANG LingXiao LI WeiJun WANG ZiFa WANG WenXing
in
Aerosols
,
Air masses
,
Air pollution
2015
Knowledge of haze particles in background areas of North China is limited, although they have been studied well in urban settings. Atmospheric aerosol particles were collected at a background site in the North China Plain during 16-31 January, 2011. Water soluble inorganic ions of PM2.5 and physicochemical characteristics of individual particles on hazy and clean days were measured by Ion Chromatography (IC) and Transmission Electron Microscopy (TEM), respectively. Average PM2.5 mass concentration was 50.4±29.9 μg m^-3 with 62.5±26.8 μg m^- 3 on hazy days and 19.9±11.5 μg m^- 3 on clean days. SO4^2-, NO3^-, and NH4^+ with a combined mass concentration of 19.0±11.5 μg m^-3 accounted for 69.8%-89.4% of the total water soluble inorganic ions. Size distributions of SO4^2- and NH4^+ showed one unimodal peak at 0.56-1.8μm on hazy days, whereas NO3^- appeared as bimodal peaks at 0.56-1.8 and 5.6-10 μm, respectively. Individual particle analyses showed that the dominant aerosols were a mixture of sulfate, nitrate, and carbonaceous species, which together determine their mixing states. 48-h air mass back trajectories on hazy days suggested that air masses crossed the polluted continental areas (such as Jing-jin-ji region and Shandong province) and entrained ground air pollutants 11-19 hours before reaching the background area. During long-range transport particles undergo ageing and tend to be internally mixed mainly due to condensation in the background atmosphere. Our results suggest that hygroscopic and optical properties of these aerosol particles in the background area differ substantially from those in urban areas.
Journal Article
Airborne Observations of Cloud Condensation Nuclei Spectra and Aerosols over East Inner Mongolia
2017
A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei(CCN)spectra was observed using a passive cloud and aerosol spectrometer(PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = c S~kwere 539 and1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12(Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles(1000–2500 cm~(-3)) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of NCCNto N_a(aerosols measured from PCASP) was 0.74(0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities,such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.
Journal Article
Observed Changes in Aerosol Physical and Optical Properties before and after Precipitation Events
by
Xingmin LI Yan DONG Zipeng DONG Chuanli DU Chuang CHEN
in
Absorption
,
Aerosols
,
Atmospheric aerosols
2016
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.
Journal Article
Heavy Metal-Polluted Aerosols Collected at a Rural Site,Northwest China
by
Xiaoyu Zhang Zhongqin Li Nozomu Takeuchi Feiteng Wang Shengjie Wang Xiaoni You Ping Zhou
in
Aerosols
,
Air masses
,
Air pollution
2017
Daily samples of aerosol(n=27) were collected from September 21 st to October 4th, 2013 in Fukang(44.17°N, 88.45°E, 475 m a.s.l.), Xinjiang, Northwest China. The enrichment factors(EFc) of selected 49 elements showed that the aerosols had extremely high concentrations of heavy metals, probably indicating their anthropogenic origins. Morphology of individual aerosol particles was determined by scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology and elemental composition, the particles were clustered into three dominant types:(Ⅰ) crustal originated particles: Si/Al-rich particles(36%) and Si/Fe-rich particles(24%);(Ⅱ) mixed source particles; and(Ⅲ) pollution derived particles: Pb-rich particles(10%). The backward trajectories were calculated using the HYSPLIT model, and the results indicated the different anthropogenic sources for heavy metals in Fukang aerosols. Air mass from north was identified as the most polluted source when compared to south and west.
Journal Article
Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China
2012
Submicron aerosol particles (with aerody- namic diameters less than 1 pm, PM1) were sampled and measured in Heshan, an urban outflow site of Guangzhou megacity in Pearl River Delta in South China, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) in November 2010 during 2010 Guangzhou Asian Games. The mean PM~ mass concentration measured was 47.9 ± 17.0 μg.m3 during the campaign, with organic aerosol (OA) and sulfate being the two dominant species, accounting for 36.3% and 20.9% of the total mass, respectively, followed by black carbon (17.1%, measured by an aethalometer), nitrate (12.9%), ammonium (9.6%) and chloride (3.1%). The average size distributions of the species (except black carbon) were dominated by an accumulation mode peaking at -550 nm. Calculations based on high-resolution organic mass spectrum showed that, C, H, O and N on average contributed 58.1%, 7.3%, 30.7%, and 3.9% to the total organic mass, respectively. The average ratio of organic mass over organic carbon mass (OM/OC) was 1.73 ± 0.08. Four components of OA were identified by the Positive Matrix Factorization (PMF) analysis, including a hydro- carbon-like (HOA), a biomass burning (BBOA) and two oxygenated (SV-OOA and LV-OOA) organic aerosol components, which on average accounted for 18.0%, 14.3%, 28.8% and 38.9% of the total organic mass, respectively.
Journal Article
Size Distributions and Source Function of Sea Spray Aerosol over the South China Sea
by
CHU Yingjia SHENG Lifang LIU Qian ZHAO Dongliang JIA Nan KONG Yawen
in
Aerosols
,
Air masses
,
Atmospheric aerosols
2016
The number concentrations in the radius range of 0.06 – 5 μm of aerosol particles and meteorological parameters were measured on board during a cruise in the South China Sea from August 25 to October 12, 2012. Effective fluxes in the reference height of 10 m were estimated by steady state dry deposition method based on the observed data, and the influences of different air masses on flux were discussed in this paper. The number size distribution was characterized by a bimodal mode, with the average total number concentration of(1.50 ± 0.76)×10~3 cm~(-3). The two mode radii were 0.099 μm and 0.886 μm, both of which were within the scope of accumulation mode. A typical daily average size distribution was compared with that measured in the Bay of Bengal. In the whole radius range, the number concentrations were in agreement with each other; the modes were more distinct in this study than that abtained in the Bay of Bengal. The size distribution of the fluxes was fitted with the sum of log-normal and power-law distribution. The impact of different air masses was mainly on flux magnitude, rather than the shape of spectral distribution. A semiempirical source function that is applicable in the radius range of 0.06 μm
Journal Article
A Multifunctional HTDMA System with a Robust Temperature Control
The hygroscopicity of atmospheric aerosols significantly influences their size distribution, cloud condensation nuclei ability, atmospheric residence time, and climate forcing. In order to investigate the hygroscopic behavior of aerosol particles and serious haze in China, a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) system was designed and constructed at Fudan University. It can function as a scanning mobility particle sizing system to measure particle size distribution in the range of 20-1000 nm in diameter, as well as a hygroscopicity analyzer for aerosol particles with diameters between 20-400 nm in the range of 20%-90% RH (relative humidity). It can also measure the effect of uptake of inorganic acids or semiVOCs on the hygroscopic behavior of aerosols, such as typical inorganic salts in atmospheric dust or their mixtures. The performance tests show that the system measured particle size of the standard polystyrene latex spheres (PSLs) is 197 nm, which is in excellent agreement with the certified diameter D=199±6 nm, as well as a standard deviation of the repeated runs SD=8.9×10^-4. In addition, the measured hygroscopic growth factors of the model compounds, (NH4)2SO4 and NaNO3, agree with the Kohler theoretical curves. The results indicate that the HTDMA system is an excellent and powerful tool for studying the hygroscopic behavior of submicron aerosols and meets the demand required for laboratory research and fieldwork on atmospheric aerosols in China.
Journal Article