Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "焦炭生产"
Sort by:
Thermal and chemical analysis of massive use of hot briquetted iron inside basic oxygen furnace
The integrated steelmaking cycle based on the blast furnace-basic oxygen furnace (BOF) route plays an important role in the production of plain and ultra-low carbon steel, especially for deep drawing operations. BOF steelmaking is based on the conversion of cast iron in steel by impinging oxygen on the metal bath at supersonic speed. In order to avoid the addition of detrimental chemical elements owing to the introduction of uncontrolled scrap and in order to decrease environmental impact caused by the intensive use of coke for the production of cast iron, HBI (hot briquetted iron) can be used as a source of metal and a fraction of cast iron. Forty industrial experimental tests were performed to evaluate the viability of the use of HBI in BOF. The experimental campaign was supported by a thermal prediction model and realized through the estimation of the oxidation enthalpy. Furthermore, the process was thermodynamically analyzed based on oxygen potentials using the off-gas composition and the bath temperature evolution during the conversion as reference data.
Fabrication of cost effective iron ore slime ceramic membrane for the recovery of organic solvent used in coke production
Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent blends were employed for the coal extraction under the total reflux condition. A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D, Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture. Membrane separations were carried out in a batch cell, and around 75 % recovered NMP was reused. The fractionated coal properties were determined using proximate and ultimate analyses. In the case of bituminous coal, the ash and sulfur contents were decreased by 99.3 % and 79.2 %, respectively, whereas, the carbon content was increased by 23.9 % in the separated coal fraction. Three different cleaning agents, namely deionized water, sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.