Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "精子成熟"
Sort by:
Regulation of epithelial function, differentiation, and remodeling in the epididymis
The epididymis is a single convoluted tubule lined by a pseudostratified epithelium. Specialized epididymal epithelial cells, the so-called principal, basal, narrow, and clear cells, establish a unique luminal environment for the maturation and storage of spermatozoa. The epididymis is functionally and structurally divided into several segments and sub-segments that create regionally distinct luminal environments. This organ is immature at birth, and epithelial cells acquire their fully differentiated phenotype during an extended postnatal period, but the factors involved in this complex process remain incompletely characterized. In the adult epididymis, the establishment of an acidic luminal pH and low bicarbonate concentration in the epididymis contributes to preventing premature activation of spermatozoa during their maturation and storage. Clear cells are proton-secreting cells throughout the epididymis, but principal cells have distinct acid/base transport properties, depending on their localization within the epididymis. Basal cells are located in all epididymal segments, but they have a distinct morphology depending on the segment and species examined. How this structural plasticity of basal cells is regulated is discussed here. Also, the role of luminal factors and androgens in the regulation of epithelial cells is reviewed in relation to their respective localization in the proximal versus distal regions of the epididymis. Finally, we describe a novel role for CFTR in tubulogenesis and epithelial cell differentiation.
The epididymis, cytoplasmic droplets and male fertility
The potential of spermatozoa to become motile during post-testicular maturation, and the relationship between the cytoplasmic droplet and fertilizing capacity are reviewed. Post-testicular maturation of spermatozoa involves the autonomous induction of motility, which can occur in vivo in testes with occluded excurrent ducts and in vitro in testicular explants, and artefactual changes in morphology that appear to occur in the testis in vitro. Both modifications may reflect time-dependent oxidation of disulphide bonds of head and tail proteins. Regulatory volume decrease (RVD), which counters sperm swelling at ejaculation, is discussed in relation to loss of cytoplasmic droplets and consequences for fertility. It is postulated that: (i) fertile males possess spermatozoa with sufficient osmolytes to drive RVD at ejaculation, permitting the droplet to round up and pinch off without membrane rupture; and (ii) infertile males possess spermatozoa with insufficient osmolytes so that RVD is inadequate, the droplet swells and the resulting flagellar angulation prevents droplet loss. Droplet retention at ejaculation is a harbinger of infertility caused by failure of the spermatozoon to negotiate the uterotubal junction or mucous and reach the egg. In this hypothesis, the epididymis regulates fertility indirectly by the extent of osmolyte provision to spermatozoa, which influences RVD and therefore droplet loss. Man is an exception, because ejaculated human spermatozoa retain their droplets. This may reflect their short midpiece, approximating head length, permitting a swollen droplet to extend along the entire midpiece; this not only obviates droplet migration and flagellar angulation but also hampers droplet loss.
Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men
Dysfunctional spermatozoa maturation is the main reason for the decrease in sperm motility and morphology in infertile men. Ejaculated spermatozoa from healthy fertile men were separated into four fractions using three-layer density gradient. Proteins were extracted and bands were digested on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Functional annotations of proteins were obtained using bioinformatics tools and pathway databases. Western blotting was performed to verify the expression levels of the proteins of interest. 1469 proteins were identified in four fractions of spermatozoa. The number of detected proteins decreased according to the maturation level of spermatozoa. During spermatozoa maturation, proteins involved in gamete generation, cell motility, energy metabolism and oxidative phosphorylation processes showed increasing expression levels and those involved in protein biosynthesis, protein transport, protein ubiquitination, and response to oxidative stress processes showed decreasing expression levels. We validated four proteins (HSP 70 1A, clusterin, tektin 2 and tektin 3) by Western blotting. The study shows protein markers that may provide insight into the ejaculated spermatozoa proteins in different stages of sperm maturation that may be altered or modified in infertile men.
Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia
Maturation arrest (MA) refers to failure of germ cell development leading to clinical nonobstructive azoospermia. Although the azoospermic factor (AZF) region of the human Y chromosome is clearly implicated in some cases, thus far very little is known about which individual Y-chromosome genes are important for complete male germ cell development. We sought to identify single genes on the Y chromosome that may be implicated in the pathogenesis of nonobstructive azoospermia associated with MA in the American population. Genotype-phenotype analysis of 132 men with Y-chromosome microdeletions was performed. Protein-coding genes associated with MA were identified by visual analysis of a genotype-phenotype map. Genes associated with MA were selected as those genes within a segment of the Y chromosome that, when completely or partially deleted, were always associated with MA and absence of retrievable testicular sperm. Expression of each identified gene transcript was then measured with quantitative RT-PCR in testicular tissue from separate cohorts of patients with idiopathic MA and obstructive azoospermia. Ten candidate genes for association with MA were identified within an 8.4-Mb segment of the Y chromosome overlapping the AZFb region. CDY2and HSFYwere the only identified genes for which differences in expression were observed between the MA and obstructive azoospermia cohorts. Men with obstructive azoospermia had 12-fold higher relative expression of CDY2transcript (1.33__.0.40 vs. 0.11+_0.04; P=O.O003) and 16-fold higher expression of HSFYtranscript (0.78__.0.32 vs. 0.05_0.02; P=O.O005) compared to men with MA. CDY2 and HSFYwere also underexpressed in patients with Sertoli cell only syndrome. These data indicate that CDY2and HSFYare located within a segment of the Y chromosome that is important for sperm maturation, and are underexpressed in testicular tissue derived from men with MA. These observations suggest that impairments in CDY2 or HSFYexpression could be implicated in the pathogenesis of MA.
A novel class of tRNA-derived small RNAs extremely en- riched in mature mouse sperm
Dear editor, The discovery of sperm-borne RNAs (mRNAs and small non-coding RNAs) has opened the possibility of additional paternal contributions aside from provid- ing the DNA [1]. It has been reported that the incoming sperm can provide information for its host egg cyto- plasm, which functionally influences the order of cell division [2], possibly via delivering RNAs. Indeed, the sperm-borne miRNA and mRNA have been demonstrat- ed as active players in early embryo development [3] and transgenerational epigenetic inheritance [4]. However, given the diversity of small RNA classes (miRNA, endo- siRNA, piRNA, etc.) generated during spermatogenesis, the contents and profiles of the small RNA population carried by mature sperm remain undefined. In the pres- ent study, we isolated mature sperm from the cauda epididymis of adult male mice (Supplementary infor- mation, Data S1). The purity of sperm was 〉 99% as evaluated by microscopy and was confirmed by RT-PCR analyses of different biomarkers (Supplementary infor- mation, Figure S1A and S1B). The RNA extracted from mature sperm, adult testis, and uterus were processed for small RNA (〈 40 nt) deep sequencing (Supplementary information, Figure S1C, S1D, S1E and Data S1).
Maturation of sperm volume regulation in the rat epididymis
Sperm maturation in the epididymis may involve differences between mature and immature spermatozoa in their volume regulatory osmolyte response. Spermatozoa obtained from the rat caput and cauda epididymidis were examined for their ability to regulate volume after transfer from in situ epididymal osmolality (measured to be 343 ± 13 and 365 ± 19 mmol kg^-1, respectively) to that of the female tract in single- and multiple-step protocols. Cells withstood the single-step treatment better than the multistep protocol. Sperm volume estimates by flow cytometric measure- ments of forward scatter of cells with intact head membranes was more sensitive than those by assessing cell coiling microscopically. At osmolalites below 210 mmol kg l both caput and cauda cells ruptured, limiting the use of flow cytometry. Above this critical value, the use of quinine showed that both caput and cauda cells could regulate volume, but cauda cells were the more effective. Of several organic osmolytes studied, myo-inositol, glutamate and KCl caused only temporary and slight swelling of spermatozoa cells in hypotonic medium. Spermatozoa of both maturities seemed to use potassium as the preferred osmolyte for regulating volume.