Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "青藏高原隆升"
Sort by:
长江贯通时限研究进展
\"万里长江源\"何时已考问地质学家和地貌学家一个世纪,仍未有明确的答案。从云南石鼓至宜昌河段存在大量河流袭夺、掉向、下切等证据,成为考究长江上游水系东流出川、入海的热点,但因河流沉积地貌复杂、受后期改造明显,其古地理解释不同学者各有表述,在金沙江何时改道东流、三峡何时被贯穿问题上各烁其词,由此得出长江东西贯通时间上溯几千万年甚至上亿年,下至十几万年。利用新近发展起来的单颗粒碎屑矿物微区分析方法,由河口或海域沉积物直接追踪源区的变化,在国外已经成为研究流域演化和源区构造运动的重要手段。长江口地层中EMP独居石Th (U)-Pb年龄较好地限定了长江东西贯通时间在2.58 MaBP前后,近年来河流沉积地貌的研究成果也认为长江贯通应发生在晚上新世-早更新世。激光剥蚀-电感耦合等离子体质谱(LA-ICPMS)不仅经济、快速,且测年精度高,将其应用于长江这样复杂的大河流域进行物源示踪、源区构造运动和流域演化研究,可望取得新的突破。今后关于长江贯通问题的研究,应该将流域演化视作一个系统,在大地构造、盆地分析和河流沉积地貌学研究基础上,充分利用近年来年代学和单矿物微区分析的新技术,不同研究方法相互补充、所得结果相互验证和约束,对争议的问题组织各方面专家进行系统研究,统一认识,不断逼近长江贯通时限的真实值。
Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review
Climate in Eastern Asia is composed of monsoon climate in the east, arid and semi-arid climate in the north and west, and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest. The underlying causes for the evolution of East Asian cli- mate during late Cenozoic have long been investigated and debated, particularly with regards to the role played by the Qing- hai-Tibetan Plateau uplift and the global cooling. In this paper, we reviewed major research developments in this area, and summarized the important results. Based on a synthesis of data, we propose that the Qinghai-Tibetan Plateau uplift alone can- not fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22-25 Ma. Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role. Moreover, atmospheric CO2 changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone (ITCZ), which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic. The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies. It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects. These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.
Geochemical studies on the source region of Asian dust
The North China and the neighbouring Mongolia in Asian Interior is characterized by extremely dry climate, resulted in one of the world's major dust emission centres. Deciphering the source region of Asian dust is critical for revealing the mechanism of the dust production, interpreting the paleo-environrnental records of eolian deposits, predicting the overall environmental effects of dust, and setting the strategies for the control of contemporary dust storms. This paper summarizes the geochemical methods applied to the source tracing of Asian dust. Nd-Sr isotopes were the most extensively studied source tracer of Asian dust and have been successfully applied in many cases. Geochemistry of detrital monomineral shows great theoretical advantages in source tracing and deserves further studies. The short-range transportation of Chinese loess with direction similar to that of the prevailing near surface wind is revealed. Source tracing also shows that the Asian dust has two ultimate material sources from the northern margin of the Tibetan Plateau and the Central Asian Orogen, which confirms the importance of mountain processes in the production of silt eolian particles. Based on the recent progresses on the source tracing of Asian dust, discussions are expanded on the natural background of Asian dust storms and potential anthropogenic influence, the materials evolution of the source regions of Asian dust and its relationships with climate changes and Tibetan uplift, and the role of Tibetan uplift in the Asian dust system.
The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Cir- cure-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental defor- mations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of an- cient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin sub- sidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated an- cient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan- Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton in- teriors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: prop- agating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in cen- tral-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, to- gether with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.
Influences of Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River
A comparative analysis of the geochemical characteristics of sediments from the Oligocene Zhuhai Formation(32-23.8 Ma),the Miocene Zhujiang Formation(23.8-16.5 Ma),and the Hanjiang Formation(16.5—10.5 Ma) and a comprehensive analysis of the geochemical characteristics of rocks surrounding the paleo-Pearl River drainage contribute to understanding the influences of the Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River.The results show that the geochemical characteristics of sediments from the Oligocene Zhuhai Formation are very different from the geochemical characteristics of sediments from the Miocene Zhujiang and Hanjiang Formations.The ∑ rare earth elements(REE) of mudstone is relatively high in the Zhuhai Formation,204.07-293.88 ppm(average 240.46 ppm),and low in the Zhujiang and Hanjiang Formations,181.32-236.73 ppm(average 203.83 ppm) and 166.84-236.65 ppm(average199.04 ppm),respectively.The chemical index of alteration(CIA) for these samples has a similar trend to the∑ REE:the CIA of the Zhuhai Formation is relatively high and the CIA of the Zhujiang and Hanjiang Formations is relatively low.The uplift of the Tibetan Plateau is crucial to the westward expansion of the paleo-Pearl River drainage.
用拉萨点大地测量资料检测青藏高原地壳的增厚
青藏高原地壳的隆升与增厚,是一个复杂的热点问题。印度板块和欧亚板块的碰撞挤压导致地壳的隆升与增厚,已被地质、构造学等方面资料证实,但利用大地测量资料定量确定高原地下地壳增厚速率的很少。基于此,利用高精度绝对重力测量资料及GPS结果定量检测高原拉萨点地下地壳增厚速率((3.9±0.8)cm/a),并给出简单的动力学模型,研究表明高原地下物质亏损,地壳增厚。