Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "03D35"
Sort by:
POUR-EL’S LANDSCAPE
We study the effective versions of several notions related to incompleteness, undecidability, and inseparability along the lines of Pour-El’s insights. Firstly, we strengthen Pour-El’s theorem on the equivalence between effective essential incompleteness and effective inseparability. Secondly, we compare the notions obtained by restricting that of effective essential incompleteness to intensional finite extensions and extensional finite extensions. Finally, we study the combination of effectiveness and hereditariness, and prove an adapted version of Pour-El’s result for this combination.
SOLVING DIFFERENCE EQUATIONS IN SEQUENCES: UNIVERSALITY AND UNDECIDABILITY
We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable:
Knapsack problem for nilpotent groups
In this work we investigate the group version of the well known knapsack problem in the class of nilpotent groups. The main result of this paper is that the knapsack problem is undecidable for any torsion-free group of nilpotency class 2 if the rank of the derived subgroup is at least 316. Also, we extend our result to certain classes of polycyclic groups, linear groups, and nilpotent groups of nilpotency class greater than or equal to 2.
Undecidability of the Spectral Gap
We construct families of translationally invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant. Moreover, this constant can be taken equal to the operator norm of the local operator that generates the Hamiltonian (the local interaction strength). The result still holds true if one restricts to arbitrarily small quantum perturbations of classical Hamiltonians. The proof combines a robustness analysis of Robinson’s aperiodic tiling, together with tools from quantum information theory: the quantum phase estimation algorithm and the history state technique mapping Quantum Turing Machines to Hamiltonians.
Free algebras in varieties of BL-algebras generated by a BLn-chain
Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one BL-chain that is an ordinal sum of a finite MV-chain Ln, and a generalized BL-chain B are described in terms of weak Boolean products of BL-algebras that are ordinal sums of subalgebras of Ln, and free algebras in the variety of basic hoops generated by B. The Boolean products are taken over the Stone spaces of the Boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generated by Ln. 2000 Mathematics subject classification: primary 03G25, 03B50, 03B52, 03D35, 03G25, 08B20.