Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"05.45.Tp"
Sort by:
Short term fluctuations of wind and solar power systems
2016
Wind and solar power are known to be highly influenced by weather events and may ramp up or down abruptly. Such events in the power production influence not only the availability of energy, but also the stability of the entire power grid. By analysing significant amounts of data from several regions around the world with resolutions of seconds to minutes, we provide strong evidence that renewable wind and solar sources exhibit multiple types of variability and nonlinearity in the time scale of seconds and characterise their stochastic properties. In contrast to previous findings, we show that only the jumpy characteristic of renewable sources decreases when increasing the spatial size over which the renewable energies are harvested. Otherwise, the strong non-Gaussian, intermittent behaviour in the cumulative power of the total field survives even for a country-wide distribution of the systems. The strong fluctuating behaviour of renewable wind and solar sources can be well characterised by Kolmogorov-like power spectra and q-exponential probability density functions. Using the estimated potential shape of power time series, we quantify the jumpy or diffusive dynamic of the power. Finally we propose a time delayed feedback technique as a control algorithm to suppress the observed short term non-Gaussian statistics in spatially strong correlated and intermittent renewable sources.
Journal Article
Reconstructing effective phase connectivity of oscillator networks from observations
2014
We present a novel approach for recovery of the directional connectivity of a small oscillator network by means of the phase dynamics reconstruction from multivariate time series data. The main idea is to use a triplet analysis instead of the traditional pairwise one. Our technique reveals an effective phase connectivity which is generally not equivalent to a structural one. We demonstrate that by comparing the coupling functions from all possible triplets of oscillators, we are able to achieve in the reconstruction a good separation between existing and non-existing connections, and thus reliably reproduce the network structure.
Journal Article
Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential
by
Walch, Alina
,
Kanevski, Mikhail
,
Mohajeri, Nahid
in
Artificial neural networks
,
Estimates
,
Machine learning
2022
With wind power providing an increasing amount of electricity worldwide, the quantification of its spatio-temporal variations and the related uncertainty is crucial for energy planners and policy-makers. Here, we propose a methodological framework which (1) uses machine learning to reconstruct a spatio-temporal field of wind speed on a regular grid from spatially irregularly distributed measurements and (2) transforms the wind speed to wind power estimates. Estimates of both model and prediction uncertainties, and of their propagation after transforming wind speed to power, are provided without any assumptions on data distributions. The methodology is applied to study hourly wind power potential on a grid of 250×250 m2 for turbines of 100 m hub height in Switzerland, generating the first dataset of its type for the country. We show that the average annual power generation per turbine is 4.4 GWh. Results suggest that around 12,000 wind turbines could be installed on all 19,617 km2 of available area in Switzerland resulting in a maximum technical wind potential of 53 TWh. To achieve the Swiss expansion goals of wind power for 2050, around 1000 turbines would be sufficient, corresponding to only 8% of the maximum estimated potential.
Journal Article
Quantifying sudden changes in dynamical systems using symbolic networks
2015
We characterize the evolution of a dynamical system by combining two well-known complex systems' tools, namely, symbolic ordinal analysis and networks. From the ordinal representation of a time series we construct a network in which every node weight represents the probability of an ordinal pattern (OP) to appear in the symbolic sequence and each edge's weight represents the probability of transitions between two consecutive OPs. Several network-based diagnostics are then proposed to characterize the dynamics of different systems: logistic, tent, and circle maps. We show that these diagnostics are able to capture changes produced in the dynamics as a control parameter is varied. We also apply our new measures to empirical data from semiconductor lasers and show that they are able to anticipate the polarization switchings, thus providing early warning signals of abrupt transitions.
Journal Article
Reliability of the Granger causality inference
2014
How to characterize information flows in physical, biological, and social systems remains a major theoretical challenge. Granger causality (GC) analysis has been widely used to investigate information flow through causal interactions. We address one of the central questions in GC analysis, that is, the reliability of the GC evaluation and its implications for the causal structures extracted by this analysis. Our work reveals that the manner in which a continuous dynamical process is projected or coarse-grained to a discrete process has a profound impact on the reliability of the GC inference, and different sampling may potentially yield completely opposite inferences. This inference hazard is present for both linear and nonlinear processes. We emphasize that there is a hazard of reaching incorrect conclusions about network topologies, even including statistical (such as small-world or scale-free) properties of the networks, when GC analysis is blindly applied to infer the network topology. We demonstrate this using a small-world network for which a drastic loss of small-world attributes occurs in the reconstructed network using the standard GC approach. We further show how to resolve the paradox that the GC analysis seemingly becomes less reliable when more information is incorporated using finer and finer sampling. Finally, we present strategies to overcome these inference artifacts in order to obtain a reliable GC result.
Journal Article