Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
621
result(s) for
"100 years"
Sort by:
The consequences of hypoglycaemia
2021
Hypoglycaemia (blood glucose concentration below the normal range) has been recognised as a complication of insulin treatment from the very first days of the discovery of insulin, and remains a major concern for people with diabetes, their families and healthcare professionals today. Acute hypoglycaemia stimulates a stress response that acts to restore circulating glucose, but plasma glucose concentrations can still fall too low to sustain normal brain function and cardiac rhythm. There are long-term consequences of recurrent hypoglycaemia, which are still not fully understood. This paper reviews our current understanding of the acute and cumulative consequences of hypoglycaemia in insulin-treated diabetes.
Journal Article
New closed-loop insulin systems
by
Hovorka, Roman
,
Boughton, Charlotte K
in
Closed loop systems
,
Diabetes
,
Diabetes mellitus (insulin dependent)
2021
Advances in diabetes technologies have enabled the development of automated closed-loop insulin delivery systems. Several hybrid closed-loop systems have been commercialised, reflecting rapid transition of this evolving technology from research into clinical practice, where it is gradually transforming the management of type 1 diabetes in children and adults. In this review we consider the supporting evidence in terms of glucose control and quality of life for presently available closed-loop systems and those in development, including dual-hormone closed-loop systems. We also comment on alternative ‘do-it-yourself’ closed-loop systems. We remark on issues associated with clinical adoption of these approaches, including training provision, and consider limitations of presently available closed-loop systems and areas for future enhancements to further improve outcomes and reduce the burden of diabetes management.
Journal Article
Defining the underlying defect in insulin action in type 2 diabetes
2021
Insulin resistance is one of the earliest defects in the pathogenesis of type 2 diabetes. Over the past 50 years, elucidation of the insulin signalling network has provided important mechanistic insights into the abnormalities of glucose, lipid and protein metabolism that underlie insulin resistance. In classical target tissues (liver, muscle and adipose tissue), insulin binding to its receptor initiates a broad signalling cascade mediated by changes in phosphorylation, gene expression and vesicular trafficking that result in increased nutrient utilisation and storage, and suppression of catabolic processes. Insulin receptors are also expressed in non-classical targets, such as the brain and endothelial cells, where it helps regulate appetite, energy expenditure, reproductive hormones, mood/behaviour and vascular function. Recent progress in cell biology and unbiased molecular profiling by mass spectrometry and DNA/RNA-sequencing has provided a unique opportunity to dissect the determinants of insulin resistance in type 2 diabetes and the metabolic syndrome; best studied are extrinsic factors, such as circulating lipids, amino acids and other metabolites and exosomal microRNAs. More challenging has been defining the cell-intrinsic factors programmed by genetics and epigenetics that underlie insulin resistance. In this regard, studies using human induced pluripotent stem cells and tissues point to cell-autonomous alterations in signalling super-networks, involving changes in phosphorylation and gene expression both inside and outside the canonical insulin signalling pathway. Understanding how these multi-layered molecular networks modulate insulin action and metabolism in different tissues will open new avenues for therapy and prevention of type 2 diabetes and its associated pathologies.
Journal Article
Current and future therapies for type 1 diabetes
by
Kreiner, Frederik F
,
von Scholten Bernt Johan
,
Gough Stephen C L
in
Beta cells
,
Cellular stress response
,
Cytokines
2021
In type 1 diabetes, insulin remains the mature therapeutic cornerstone; yet, the increasing number of individuals developing type 1 diabetes (predominantly children and adolescents) still face severe complications. Fortunately, our understanding of type 1 diabetes is continuously being refined, allowing for refocused development of novel prevention and management strategies. Hitherto, attempts based on immune suppression and modulation have been only partly successful in preventing the key pathophysiological feature in type 1 diabetes: the immune-mediated derangement or destruction of beta cells in the pancreatic islets of Langerhans, leading to low or absent insulin secretion and chronic hyperglycaemia. Evidence now warrants a focus on the beta cell itself and how to avoid its dysfunction, which is putatively caused by cytokine-driven inflammation and other stress factors, leading to low insulin-secretory capacity, autoantigen presentation and immune-mediated destruction. Correspondingly, beta cell rescue strategies are being pursued, which include antigen vaccination using, for example, oral insulin or peptides, as well as agents with suggested benefits on beta cell stress, such as verapamil and glucagon-like peptide-1 receptor agonists. Whilst autoimmune-focused prevention approaches are central in type 1 diabetes and will be a requirement in the advent of stem cell-based replacement therapies, managing the primarily cardiometabolic complications of established type 1 diabetes is equally essential. In this review, we outline selected recent and suggested future attempts to address the evolving profile of the person with type 1 diabetes.
Journal Article
Hypothalamic glucose-sensing mechanisms
2021
Chronic metabolic diseases, including diabetes and obesity, have become a major global health threat of the twenty-first century. Maintaining glucose homeostasis is essential for survival in mammals. Complex and highly coordinated interactions between glucose-sensing mechanisms and multiple effector systems are essential for controlling glucose levels in the blood. The central nervous system (CNS) plays a crucial role in regulating glucose homeostasis. Growing evidence indicates that disruption of glucose sensing in selective CNS areas, such as the hypothalamus, is closely interlinked with the pathogenesis of obesity and type 2 diabetes mellitus. However, the underlying intracellular mechanisms of glucose sensing in the hypothalamus remain elusive. Here, we review the current literature on hypothalamic glucose-sensing mechanisms and discuss the impact of alterations of these mechanisms on the pathogenesis of diabetes.
Journal Article
A global perspective on the issue of access to insulin
by
Beran, David
,
Mbanya Jean Claude
,
Mba, Camille M
in
Diabetes
,
Diabetes mellitus (insulin dependent)
,
Global health
2021
The discovery of insulin in 1921 changed the prognosis for people with type 1 diabetes. A century later, availability and affordability of insulin remain a challenge in many parts of the globe. Using the WHO’s framework on understanding the life cycle of medicines, this review details the global and national challenges that affect patients’ abilities to access and afford insulin. Current research and development in diabetes has seen some innovations, but none of these have truly been game-changing. Currently, three multinational companies control over 95% of global insulin supply. The inclusion of insulin on the WHO’s Prequalification Programme is an opportunity to facilitate entry of new companies into the market. Many governments lack policies on the selection, procurement, supply, pricing and reimbursement of insulin. Moreover, mark-ups in the supply chain also affect the final price to the consumer. Whilst expenses related to diabetes are mostly covered by insurance in high-income countries, many patients from low- and middle-income countries have to pay out of their own pockets. The organisation of diabetes management within the healthcare system also affects patient access to insulin. The challenges affecting access to insulin are complex and require a wide range of solutions. Given that 2021 marks the centenary of the discovery of insulin, there is need for global advocacy to ensure that the benefits of insulin and innovations in diabetes care reach all individuals living with diabetes.
Journal Article
The promise of stem cell-derived islet replacement therapy
2021
Present-day treatments for people that are insulin dependent require multiple insulin injections, sometimes with an insulin pump, coupled with regular blood glucose monitoring. The availability of modified insulins, each with peaks of activity at varying times, has improved diabetes management. On the other hand, there have been impressive results leading to insulin independence by transplantation of cadaveric islets coupled with immune suppression. This review focuses on the possibility of treating diabetes with cellular transplants, specifically with the use of pluripotent stem cells, to produce a virtually unlimited and uniform supply of human islet-like clusters by directed differentiation. Prospects for improving the in vitro differentiation of human endocrine cells for the study of endocrine function and their possible clinical uses are also discussed.
Journal Article
‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues
by
Chatterjee Deepak
,
Weiss, Michael A
,
Balamurugan, Dhayalan
in
Algorithms
,
Bioavailability
,
Blood glucose
2021
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such ‘smart’ systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based ‘closed-loop’ systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin’s conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Journal Article
Consequences of recurrent hypoglycaemia on brain function in diabetes
2021
The discovery of insulin and its subsequent mass manufacture transformed the lives of people with type 1 and 2 diabetes. Insulin, however, was a drug with a ‘dark side’. It brought with it the risk of iatrogenic hypoglycaemia. In this short review, the cellular consequences of recurrent hypoglycaemia, with a particular focus on the brain, are discussed. Using the ventromedial hypothalamus as an exemplar, this review highlights how recurrent hypoglycaemia has an impact on the specialised cells in the brain that are critical to the regulation of glucose homeostasis and the counterregulatory response to hypoglycaemia. In these cells, recurrent hypoglycaemia initiates a series of adaptations that ensure that they are more resilient to subsequent hypoglycaemia, but this leads to impaired hypoglycaemia awareness and a paradoxical increased risk of severe hypoglycaemia. This review also highlights how hypoglycaemia, as an oxidative stressor, may also exacerbate chronic hyperglycaemia-induced increases in oxidative stress and inflammation, leading to damage to vulnerable brain regions (and other end organs) and accelerating cognitive decline. Pre-clinical research indicates that glucose recovery following hypoglycaemia is considered a period where reactive oxygen species generation and oxidative stress are pronounced and can exacerbate the longer-term consequence of chronic hypoglycaemia. It is proposed that prior glycaemic control, hypoglycaemia and the degree of rebound hyperglycaemia interact synergistically to accelerate oxidative stress and inflammation, which may explain why increased glycaemic variability is now increasingly considered a risk factor for the complications of diabetes.
Journal Article
Realising the long-term promise of insulin therapy: the DCCT/EDIC study
2021
The introduction of insulin in the treatment of juvenile-onset, now type 1, diabetes mellitus transformed a rapidly fatal disease into a chronic degenerative one. During the insulin-treatment era, long-term microvascular and cardiovascular complications proved to be the bane of existence for people with type 1 diabetes, leading to blindness, kidney failure, amputations, cardiovascular disease (CVD) and premature mortality. The nascent understanding of the link between non-physiologically regulated glucose levels and these complications led to the development of new treatment tools in the 1970s and 1980s that facilitated the delivery of insulin to achieve glucose levels closer to non-diabetic levels. These therapeutic advances set the stage for definitive testing of the glucose hypothesis. The Diabetes Control and Complications Trial (DCCT), supported by the National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health (NIH), definitively established the benefits and risks of intensive therapy that substantially lowered mean blood glucose levels, measured by HbA1c, over a mean 6.5 years of therapy. Intensive therapy in the DCCT, resulting in a mean HbA1c of ~7% (53 mmol/mol), reduced the development and progression of early microvascular and neurological complications associated with diabetes by 34–76% compared with the conventional-treatment group, which maintained an HbA1c of ~9% (75 mmol/mol). Intensive therapy was also associated with weight gain and a threefold increased risk for hypoglycaemia. At the end of the DCCT, a long-term observational follow-up study, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, commenced. Despite the convergence of HbA1c levels between the two groups during EDIC, owing to the adoption of intensive therapy by the original DCCT conventional-treatment group and the return of all participants to their own healthcare providers for diabetes care, the development and progression of complications continued to be substantially less in the original intensive-treatment group vs the conventional-treatment group; this phenomenon was termed ‘metabolic memory’. The DCCT demonstrated a major reduction in early-stage complications with intensive therapy and the metabolic memory phenomenon during EDIC contributed to a substantially lower burden of advanced complications over time. These included a 57% lower risk of CVD events and 33% lower rate of mortality in the original intensive-treatment group compared with the conventional-treatment group. DCCT/EDIC has ushered in the intensive-treatment era, which has been universally adopted and includes the goal of achieving HbA1c levels less than 7% (53 mmol/mol) for most patients. Although the challenge of making intensive therapy (with the aim of achieving normoglycaemia) as widely accessible and safe as possible remains, continuing improvements in insulin therapy 100 years after its introduction promise a brighter future for people with type 1 diabetes.
Journal Article