Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
772
result(s) for
"14/3"
Sort by:
Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease
2020
Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD.
Nanoparticles are being explored as a potential method to target Aβ aggregation in Alzheimer’s disease. Here, the authors develop gold nanoparticles that were capped with chiral L or D-glutathione which has been shown to improve BBB permeability and demonstrate their ability to improve cognitive function in a mouse model of AD.
Journal Article
Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy
The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu
2+
-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu
2+
into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing
64
Cu
2+
, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an “ideal” PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.
A balance between high stability and rapid degradation is required for effective photothermal anti-cancer agents. Here, the authors use Cu
2+
to accelerate the degradation of black phosphorus nanosheets while enhancing its photothermal ability and apply this material for PET-guided, CDT-enhanced combination cancer therapy in mice.
Journal Article
Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains
Migrasomes are recently discovered cellular organelles that form as large vesicle-like structures on retraction fibres of migrating cells. While the process of migrasome formation has been described before, the molecular mechanism underlying migrasome biogenesis remains unclear. Here, we propose that the mechanism of migrasome formation consists of the assembly of tetraspanin- and cholesterol-enriched membrane microdomains into micron-scale macrodomains, which swell into migrasomes. The major finding underlying the mechanism is that tetraspanins and cholesterol are necessary and sufficient for migrasome formation. We demonstrate the necessity of tetraspanins and cholesterol via live-cell experiments, and their sufficiency by generating migrasome-like structures in reconstituted membrane systems. We substantiate the mechanism by a theoretical model proposing that the key factor driving migrasome formation is the elevated membrane stiffness of the tetraspanin- and cholesterol-enriched macrodomains. Finally, the theoretical model was quantitatively validated by experimental demonstration of the membrane-stiffening effect of tetraspanin 4 and cholesterol.
Yu and colleagues report that migrasome formation depends on tetraspanin and cholesterol. Macrodomains formed by clustering of tetraspanin- and cholesterol-enriched membrane domains swell to generate migrasomes.
Journal Article
Emerging views of the nucleus as a cellular mechanosensor
2018
The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. Here we discuss recent findings that support a direct role of the nucleus in cellular mechanosensing and highlight novel tools to study nuclear mechanotransduction.
Mechanical forces influence both cytoplasmic and nuclear events. Kirby and Lammerding discuss recent evidence suggesting that the nucleus itself is a mechanosensor and methods to study nuclear mechanotransduction.
Journal Article
Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets
2017
Advanced membranes that enable ultrafast water flux while demonstrating anti-biofouling characteristics can facilitate sustainable water/wastewater treatment processes. MXenes, two-dimensional (2D) metal carbides and nitrides, have attracted attention for applications in water/wastewater treatment. In this work, we reported the antibacterial properties of micrometer-thick titanium carbide (Ti
3
C
2
T
x
) MXene membranes prepared by filtration on a polyvinylidene fluoride (PVDF) support. The bactericidal properties of Ti
3
C
2
T
x
modified membranes were tested against
Escherichia coli
(
E
.
coli
) and
Bacillus subtilis
(
B
.
subtilis
) by bacterial growth on the membrane surface and its exposure to bacterial suspensions. The antibacterial rate of fresh Ti
3
C
2
T
x
MXene membranes reaches more than 73% against
B
.
subtilis
and 67% against
E
.
coli
as compared with that of control PVDF, while aged Ti
3
C
2
T
x
membrane showed over 99% growth inhibition of both bacteria under same conditions. Flow cytometry showed about 70% population of dead and compromised cells after 24 h of exposure of both bacterial strains. The damage of the cell surfaces was also revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis, respectively. The demonstrated antibacterial activity of MXene coated membranes against common waterborne bacteria, promotes their potential application as anti-biofouling membrane in water and wastewater treatment processes.
Journal Article
Mechanosensing is critical for axon growth in the developing brain
2016
Much of what is known about nervous system development is based on chemical signaling. In this study, Koser
et al.
demonstrate that developing neurons also respond to mechanical signals and that local tissue stiffness is a regulator of neuronal growth
in vivo
.
During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding.
In vitro
, substrate stiffness determined growth patterns of
Xenopus
retinal ganglion cell axons.
In vivo
atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced
in vitro
in the absence of chemical gradients. To test the importance of mechanical signals for axon growth
in vivo
, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth
in vivo
.
Journal Article
Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets
2021
Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer’s disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.
Zhang et al. identify and characterize supermeres as extracellular nanoparticles that exhibit unique biological and functional properties with potential prognostic and therapeutic value across distinct diseases.
Journal Article
Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor
2020
Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.
SARS-CoV-2 spike protein binds host ACE2 for virus entry. Here, the authors determine kinetic and thermodynamic properties of this interaction using atomic force microscopy, develop peptides that inhibit binding and suggest existence of additional attachment factors.
Journal Article
Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy
Developing biomimetic nanoparticles without loss of the integrity of proteins remains a major challenge in cancer chemotherapy. Here, we develop a biocompatible tumor-cell-exocytosed exosome-biomimetic porous silicon nanoparticles (PSiNPs) as drug carrier for targeted cancer chemotherapy. Exosome-sheathed doxorubicin-loaded PSiNPs (DOX@E-PSiNPs), generated by exocytosis of the endocytosed DOX-loaded PSiNPs from tumor cells, exhibit enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma following intravenous administration. In addition, DOX@E-PSiNPs, regardless of their origin, possess significant cellular uptake and cytotoxicity in both bulk cancer cells and cancer stem cells (CSCs). These properties endow DOX@E-PSiNPs with great in vivo enrichment in total tumor cells and side population cells with features of CSCs, resulting in anticancer activity and CSCs reduction in subcutaneous, orthotopic and metastatic tumor models. These results provide a proof-of-concept for the use of exosome-biomimetic nanoparticles exocytosed from tumor cells as a promising drug carrier for efficient cancer chemotherapy.
The generation of biomimetic nanoparticles that retain the integrity of proteins has been a challenge. Here, the authors generate biomimetic nanoparticles that are exocytosed from tumour cells and show their therapeutic potential in targeting tumours and cancer stem cells in multiple mouse models.
Journal Article
Bacterial adhesion at the single-cell level
2018
The formation of multicellular microbial communities, called biofilms, starts from the adhesion of a few planktonic cells to the surface. The transition from a free-living planktonic lifestyle to a sessile, attached state is a multifactorial process that is determined by biological, chemical and physical properties of the environment, the surface and the bacterial cell. The initial weak, reversible interactions between a bacterium and a surface strengthen to yield irreversible adhesion. In this Review, we summarize our understanding of the mechanisms governing bacterial adhesion at the single-cell level, including the physical forces experienced by a cell before reaching the surface, the first contact with a surface and the transition from reversible to permanent adhesion.
Journal Article