Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
177 result(s) for "3-Phosphoinositide-Dependent Protein Kinases - genetics"
Sort by:
Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier
Brain metastasis is an important cause of mortality in breast cancer patients. A key event during brain metastasis is the migration of cancer cells through blood–brain barrier (BBB). However, the molecular mechanism behind the passage through this natural barrier remains unclear. Here we show that cancer-derived extracellular vesicles (EVs), mediators of cell–cell communication via delivery of proteins and microRNAs (miRNAs), trigger the breakdown of BBB. Importantly, miR-181c promotes the destruction of BBB through the abnormal localization of actin via the downregulation of its target gene, PDPK1 . PDPK1 degradation by miR-181c leads to the downregulation of phosphorylated cofilin and the resultant activated cofilin-induced modulation of actin dynamics. Furthermore, we demonstrate that systemic injection of brain metastatic cancer cell-derived EVs promoted brain metastasis of breast cancer cell lines and are preferentially incorporated into the brain in vivo . Taken together, these results indicate a novel mechanism of brain metastasis mediated by EVs that triggers the destruction of BBB. A key event during metastasis to the brain is the migration of cancer cells through the blood–brain barrier (BBB). Here the authors show that cancer-cell-derived extracellular vesicles promote metastasis by promoting BBB breaching.
The Hippo pathway integrates PI3K–Akt signals with mechanical and polarity cues to control tissue growth
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1
There is great interest in developing selective protein kinase inhibitors by targeting allosteric sites, but these sites often involve protein-protein or protein-peptide interfaces that are very challenging to target with small molecules. Here we present a systematic approach to targeting a functionally conserved allosteric site on the protein kinase PDK1 called the PDK1-interacting fragment (PIF) tide-binding site, or PIF pocket. More than two dozen prosurvival and progrowth kinases dock a conserved peptide tail into this binding site, which recruits them to PDK1 to become activated. Using a site-directed chemical screen, we identified and chemically optimized ligand-efficient, selective, and cell-penetrant small molecules (molecular weight ~380 Da) that compete with the peptide docking motif for binding to PDK1. We solved the first high-resolution structure of a peptide docking motif (PIFtide) bound to PDK1 and mapped binding energy hot spots using mutational analysis. We then solved structures of PDK1 bound to the allosteric small molecules, which revealed a binding mode that remarkably mimics three of five hot-spot residues in PIFtide. These allosteric small molecules are substrate-selective PDK1 inhibitors when used as single agents, but when combined with an ATP-competitive inhibitor, they completely suppress the activation of the downstream kinases. This work provides a promising new scaffold for the development of high-affinity PIF pocket ligands, which may be used to enhance the anticancer activity of existing PDK1 inhibitors. Moreover, our results provide further impetus for exploring the helix aC patches of other protein kinases as potential therapeutic targets even though they involve protein-protein interfaces.
LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1
Non-small cell lung cancer (NSCLC) is the major cause of cancer-associated death worldwide, but its underlying mechanisms remain to be fully elucidated. Long noncoding RNAs (lncRNAs) are known to play an important role in the aberrant regulation of gene expression in many cancers, including NSCLC. Here, we investigated the involvement of the lncRNA KTN1-AS1 in NSCLC. We found that KTN1-AS1 expression was upregulated in NSCLC tissue and was positively associated with poor prognosis. KTN1-AS1 knockdown inhibited cell growth and proliferation, increased apoptosis, and modulated the expression of cell cycle- and apoptosis-related proteins (cyclin A1, cyclin-dependent kinase 2, Bcl2, and Bax) in NSCLC cell lines and tumour xenografts in nude mice. KTN1-AS1 bound to and directly regulated the expression of miR-130a-5p. Notably, miR-130a-5p overexpression suppressed NSCLC cell proliferation and increased apoptosis in vitro and in vivo, and this effect was reversed by KTN1-AS1 overexpression. Finally, we showed that KTN1-AS1 modulated the expression of 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a miR-130a-5p target and key regulator of autophagy in NSCLC cells. Taken together, our results suggest that the KTN1-AS1/miR-130a-5p/PDPK1 pathway may be a potential therapeutic target for NSCLC.
Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice
Aims/hypothesisThe aim of this study was to elucidate the impact of 3′-phosphoinositide-dependent protein kinase-1 (PDPK1) in vascular endothelial cells on the maintenance of pancreatic beta cell mass and function.MethodsMale vascular endothelial cell-specific Pdpk1-knockout mice (Tie2+/−/Pdpk1flox/flox mice) and their wild-type littermates (Tie2−/−/Pdpk1flox/flox mice; control) were used for this study. At 12 weeks of age, an IPGTT and OGTT were conducted. Pancreatic blood flow was measured under anaesthesia. Thereafter, islet blood flow was measured by the microsphere method. Mice were killed for islet isolation and further functional study and mRNA was extracted from islets. Pancreases were sampled for immunohistochemical analyses.ResultsDuring the IPGTT, the blood glucose level was comparable between knockout mice and control flox mice, although serum insulin level was significantly lower in knockout mice. During the OGTT, glucose tolerance deteriorated slightly in knockout mice, accompanied by a decreased serum insulin level. During an IPGTT after pre-treatment with exendin-4 (Ex-4), glucose tolerance was significantly impaired in knockout mice. In fact, glucose-stimulated insulin secretion of isolated islets from knockout mice was significantly reduced compared with control flox mice, and addition of Ex-4 revealed impaired sensitivity to incretin hormones in islets of knockout mice. In immunohistochemical analyses, both alpha and beta cell masses were significantly reduced in knockout mice. In addition, the CD31-positive area was significantly decreased in islets of knockout mice. The proportion of pimonidazole-positive islets was significantly increased in knockout mice. mRNA expression levels related to insulin biosynthesis (Ins1, Ins2, Mafa, Pdx1 and Neurod [also known as Neurod1]) and beta cell function (such as Gck and Slc2a2) were significantly decreased in islets of knockout mice. Microsphere experiments revealed remarkably reduced islet blood flow. In addition, mRNA expression levels of Hif1α (also known as Hif1a) and its downstream factors such as Adm, Eno1, Tpi1 (also known as Ets1), Hmox1 and Vegfa, were significantly increased in islets of knockout mice, indicating that islets of knockout mice were in a more hypoxic state than those of control flox mice. As a result, mRNA expression levels related to adaptive unfolded protein response and endoplasmic reticulum stress-related apoptotic genes were significantly elevated in islets of knockout mice. In addition, inflammatory cytokine levels were increased in islets of knockout mice. Electron microscopy revealed reduced endothelial fenestration and thickening of basal membrane of vascular endothelium in islets of knockout mice.Conclusions/interpretationVascular endothelial PDPK1 plays an important role in the maintenance of pancreatic beta cell mass and function by maintaining vascularity of pancreas and islets and protecting them from hypoxia, hypoxia-related endoplasmic reticulum stress, inflammation and distortion of capillary structure.
PDK1, associated with glycolytic metabolism, is a potential prognostic biomarker in osteosarcoma
The study explores the prognostic significance and therapeutic potential of 3-phosphoinositide dependent protein kinase-1 (PDK1) in osteosarcoma. Using bioinformatics analysis and experimental validation, we analyzed PDK1 expression and its correlation with patient prognosis from GEPIA and UCSCXena databases. High PDK1 expression was found to be significantly associated with reduced survival in osteosarcoma patients, suggesting its value as a prognostic biomarker. Functional assays were performed to investigate the biological processes influenced by PDK1. Gene Ontology (GO) analysis indicated that PDK1 is involved in metabolism and cell proliferation. KEGG enrichment analysis revealed that genes related to PDK1 are enriched in pathways associated with metabolism, cell proliferation, and immune escape. In vitro experiments demonstrate that silencing PDK1 impairs glycolysis, reduces proliferation, and induces apoptosis in 143B osteosarcoma cells. Pan-cancer analysis confirms PDK1’s overexpression and poor prognosis association in multiple malignancies. Pan-cancer analysis extended the findings to other cancer types, confirming that PDK1 is overexpressed in multiple malignancies and generally associated with poor prognosis. This reinforces the potential of PDK1 as a universal biomarker and therapeutic target in oncology. The findings suggest PDK1 as a critical regulator of glycolytic metabolism and a potential therapeutic target in osteosarcoma. Targeting PDK1 could provide a novel therapeutic strategy for treating osteosarcoma and possibly other cancers.
The 3-phosphoinositide–dependent protein kinase 1 is an essential upstream activator of protein kinase A in malaria parasites
Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signalling is essential for the proliferation of Plasmodium falciparum malaria blood stage parasites. The mechanisms regulating the activity of the catalytic subunit PfPKAc, however, are only partially understood, and PfPKAc function has not been investigated in gametocytes, the sexual blood stage forms that are essential for malaria transmission. By studying a conditional PfPKAc knockdown (cKD) mutant, we confirm the essential role for PfPKAc in erythrocyte invasion by merozoites and show that PfPKAc is involved in regulating gametocyte deformability. We furthermore demonstrate that overexpression of PfPKAc is lethal and kills parasites at the early phase of schizogony. Strikingly, whole genome sequencing (WGS) of parasite mutants selected to tolerate increased PfPKAc expression levels identified missense mutations exclusively in the gene encoding the parasite orthologue of 3-phosphoinositide–dependent protein kinase-1 (PfPDK1). Using targeted mutagenesis, we demonstrate that PfPDK1 is required to activate PfPKAc and that T189 in the PfPKAc activation loop is the crucial target residue in this process. In summary, our results corroborate the importance of tight regulation of PfPKA signalling for parasite survival and imply that PfPDK1 acts as a crucial upstream regulator in this pathway and potential new drug target.
Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load
Phosphatidylinositol 3-kinase (PI3K) plays an important role in protein metabolism and cell growth. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3′-phosphoinositide–dependent kinase 1 (PDK1), a key component of PI3K signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of mechanical load–induced muscle hypertrophy. Whereas mechanical load-induced changes in gene expression were not affected, the phosphorylation of ribosomal protein S6 kinase (S6K) and S6 induced by mechanical load was attenuated in skeletal muscle of M-PDK1KO mice, suggesting that PDK1 regulates muscle hypertrophy not through changes in gene expression but through stimulation of kinase cascades such as the S6K-S6 axis, which plays a key role in protein synthesis. Administration of the β 2 -adrenergic receptor (AR) agonist clenbuterol activated the S6K-S6 axis in skeletal muscle and induced muscle hypertrophy in mice. These effects of clenbuterol were attenuated in M-PDK1KO mice, and mechanical load–induced activation of the S6K-S6 axis and muscle hypertrophy were inhibited in mice with skeletal muscle–specific deficiency of β 2 -AR. Our results suggest that PDK1 regulates skeletal muscle mass under the static condition and that it contributes to mechanical load–induced muscle hypertrophy, at least in part by mediating signaling from β 2 -AR.
Mitotic gene regulation by the N-MYC-WDR5-PDPK1 nexus
Background During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5—a critical MYC cofactor—regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN -amplification, which results in high cellular levels of the N-MYC protein. Results Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. Conclusions Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.
PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model
Because malignant cells have altered, usually accelerated, energy consumption, targeting metabolic signaling represents a prevailing strategy for tumor therapy. Phosphoinositide-dependent kinase 1 (PDK1) is a proximal signaling molecule of phosphatidylinositol 3-kinase, which is required for metabolic activation. It is still lacking definitive evidence whether inactivation of PDK1 can overwhelm tumorigenesis in vivo . Herein we revealed that mammary-specific ablation of PDK1 could delay tumor initiation, progression and metastasis in a spontaneous mouse tumor model. We also demonstrated that inducible deletion of PDK1 could noticeably shrink the growing breast tumors. However, a small portion of PDK1-deficient tumorigenic cells eventually established tumor lesions, albeit at a relatively later phase, most likely owing to compensatory upregulation of extracellular signal–regulated kinase 1/2 (Erk1/2) phosphorylation. Consequently, simultaneous inhibition of PDK1 and Erk1/2 impeded the survival of breast cancer cells. Thus we identify PDK1 as a potential therapeutic target for breast cancer, particularly in combination with an Erk1/2 inhibitor.