Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "30钢"
Sort by:
Embrittlement and toughening in CGHAZ of ASTM4130 steel
In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. The effect of post welding heat treatment (PWHT) and welding heat inputs on the toughness of CGHAZ was also analyzed. The results show that CGHAZ has the lowest toughness, which is only 5.5%–7.1% of the base metal. CGHAZ is mainly composed of dislocation martensite, up-per and lower bainite, and M-A constituents. But after PWHT, carbides precipitate from non-equilibrium microstructures of CGHAZ accompanying some retained austenite which transforms into low bainite, thereby enhancing toughness over the base metal. Therefore, the key microstructure factors affecting fracture toughness are lathlike non-equilibrium microstructure and lowered supersaturation before and after PWHT respectively. When welding heat input is between 12 kJ/cm and 28 kJ/cm, the mechanical properties in CGHAZ of ASTM4130 with single-pass welding can satisfy the requirements when PWHT is applied.
Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel
The mechanical properties and microstructure features of the fine-grained heat-affected zone(FGHAZ) of ASTM4130 steel was investigated by optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM),and welding thermal simulation test.It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness,compared with that of the base metal.Microstructure analysis reveals that the FGHAZ is mainly composed of acicular,equiaxed ferrite,granular ferrite,martensite,and martensite-austenite(M-A) constituent.The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries.Meanwhile,the existence of martensite and M-A constituent,which distribute in a discontinuous network,is also detrimental to the mechanical properties.