Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
390
result(s) for
"3D deep features"
Sort by:
Human papillomavirus (HPV) prediction for oropharyngeal cancer based on CT by using off‐the‐shelf features: A dual‐dataset study
2025
Background
This study aims to develop a novel predictive model for determining human papillomavirus (HPV) presence in oropharyngeal cancer using computed tomography (CT). Current image‐based HPV prediction methods are hindered by high computational demands or suboptimal performance.
Methods
To address these issues, we propose a methodology that employs a Siamese Neural Network architecture, integrating multi‐modality off‐the‐shelf features—handcrafted features and 3D deep features—to enhance the representation of information. We assessed the incremental benefit of combining 3D deep features from various networks and introduced manufacturer normalization. Our method was also designed for computational efficiency, utilizing transfer learning and allowing for model execution on a single‐CPU platform. A substantial dataset comprising 1453 valid samples was used as internal validation, a separate independent dataset for external validation.
Results
Our proposed model achieved superior performance compared to other methods, with an average area under the receiver operating characteristic curve (AUC) of 0.791 [95% (confidence interval, CI), 0.781–0.809], an average recall of 0.827 [95% CI, 0.798–0.858], and an average accuracy of 0.741 [95% CI, 0.730–0.752], indicating promise for clinical application. In the external validation, proposed method attained an AUC of 0.581 [95% CI, 0.560–0.603] and same network architecture with pure deep features achieved an AUC of 0.700 [95% CI, 0.682–0.717]. An ablation study confirmed the effectiveness of incorporating manufacturer normalization and the synergistic effect of combining different feature sets.
Conclusion
Overall, our proposed model not only outperforms existing counterparts for HPV status prediction but is also computationally accessible for use on a single‐CPU platform, which reduces resource requirements and enhances clinical usability.
Journal Article
RePCD-Net: Feature-Aware Recurrent Point Cloud Denoising Network
2022
The captured 3D point clouds by depth cameras and 3D scanners are often corrupted by noise, so point cloud denoising is typically required for downstream applications. We observe that: (i) the scale of the local neighborhood has a significant effect on the denoising performance against different noise levels, point intensities, as well as various kinds of local details; (ii) non-iteratively evolving a noisy input to its noise-free version is non-trivial; (iii) both traditional geometric methods and learning-based methods often lose geometric features with denoising iterations, and (iv) most objects can be regarded as piece-wise smooth surfaces with a small number of features. Motivated by these observations, we propose a novel and task-specific point cloud denoising network, named RePCD-Net, which consists of four key modules: (i) a recurrent network architecture to effectively remove noise; (ii) an RNN-based multi-scale feature aggregation module to extract adaptive features in different denoising stage; (iii) a recurrent propagation layer to enhance the geometric feature perception across stages; and (iv) a feature-aware CD loss to regularize the predictions towards multi-scale geometric details. Extensive qualitative and quantitative evaluations demonstrate the effectiveness and superiority of our method over state-of-the-arts, in terms of noise removal and feature preservation.
Journal Article
Segmentation of Lung Nodules Using Improved 3D-UNet Neural Network
2020
Lung cancer has one of the highest morbidity and mortality rates in the world. Lung nodules are an early indicator of lung cancer. Therefore, accurate detection and image segmentation of lung nodules is of great significance to the early diagnosis of lung cancer. This paper proposes a CT (Computed Tomography) image lung nodule segmentation method based on 3D-UNet and Res2Net, and establishes a new convolutional neural network called 3D-Res2UNet. 3D-Res2Net has a symmetrical hierarchical connection network with strong multi-scale feature extraction capabilities. It enables the network to express multi-scale features with a finer granularity, while increasing the receptive field of each layer of the network. This structure solves the deep level problem. The network is not prone to gradient disappearance and gradient explosion problems, which improves the accuracy of detection and segmentation. The U-shaped network ensures the size of the feature map while effectively repairing the lost features. The method in this paper was tested on the LUNA16 public dataset, where the dice coefficient index reached 95.30% and the recall rate reached 99.1%, indicating that this method has good performance in lung nodule image segmentation.
Journal Article
Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network
by
Shen, Qiang
,
Zhang, Haokui
,
Li, Ying
in
2D convolutional neural networks
,
3D convolutional neural networks
,
3D structure
2017
Recent research has shown that using spectral–spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods—namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods—on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.
Journal Article
Spatiotemporal Convolutional Neural Network with Convolutional Block Attention Module for Micro-Expression Recognition
by
Liu, Xinyu
,
Chen, Boyu
,
Tan, Yang
in
3D convolutional neural network (3D CNN)
,
Accuracy
,
adaptive feature weights
2020
A micro-expression is defined as an uncontrollable muscular movement shown on the face of humans when one is trying to conceal or repress his true emotions. Many researchers have applied the deep learning framework to micro-expression recognition in recent years. However, few have introduced the human visual attention mechanism to micro-expression recognition. In this study, we propose a three-dimensional (3D) spatiotemporal convolutional neural network with the convolutional block attention module (CBAM) for micro-expression recognition. First image sequences were input to a medium-sized convolutional neural network (CNN) to extract visual features. Afterwards, it learned to allocate the feature weights in an adaptive manner with the help of a convolutional block attention module. The method was testified in spontaneous micro-expression databases (Chinese Academy of Sciences Micro-expression II (CASME II), Spontaneous Micro-expression Database (SMIC)). The experimental results show that the 3D CNN with convolutional block attention module outperformed other algorithms in micro-expression recognition.
Journal Article
Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods
2019
Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.
Journal Article
Three-Dimensional Gridded Radar Echo Extrapolation for Convective Storm Nowcasting Based on 3D-ConvLSTM Model
by
Li, Qian
,
Jing, Jinrui
,
Sun, Nengli
in
3D radar echo extrapolation
,
3D spatial features
,
3D-ConvLSTM
2022
Radar echo extrapolation has been widely developed in previous studies for precipitation and storm nowcasting. However, most studies have focused on two-dimensional radar images, and extrapolation of multi-altitude radar images, which can provide more informative and visual forecasts about weather systems in realistic space, has been less explored. Thus, this paper proposes a 3D-convolutional long short-term memory (ConvLSTM)-based model to perform three-dimensional gridded radar echo extrapolation for severe storm nowcasting. First, a 3D-convolutional neural network (CNN) is used to extract the 3D spatial features of each input grid radar volume. Then, 3D-ConvLSTM layers are leveraged to model the spatial–temporal relationship between the extracted 3D features and recursively generate the 3D hidden states correlated to the future. Nowcasting results are obtained after applying another 3D-CNN to up-sample the generated 3D hidden states. Comparative experiments were conducted on a public National Center for Atmospheric Research Data Archive dataset with a 3D optical flow method and other deep-learning-based models. Quantitative evaluations demonstrate that the proposed 3D-ConvLSTM-based model achieves better overall and longer-term performance for storms with reflectivity values above 35 and 45 dBZ. In addition, case studies qualitatively demonstrate that the proposed model predicts more realistic storm evolution and can facilitate early warning regarding impending severe storms.
Journal Article
Research on Multi-View 3D Reconstruction Technology Based on SFM
2022
Multi-view 3D reconstruction technology is used to restore a 3D model of practical value or required objects from a group of images. This paper designs and implements a set of multi-view 3D reconstruction technology, adopts the fusion method of SIFT and SURF feature-point extraction results, increases the number of feature points, adds proportional constraints to improve the robustness of feature-point matching, and uses RANSAC to eliminate false matching. In the sparse reconstruction stage, the traditional incremental SFM algorithm takes a long time, but the accuracy is high; the traditional global SFM algorithm is fast, but its accuracy is low; aiming at the disadvantages of traditional SFM algorithm, this paper proposes a hybrid SFM algorithm, which avoids the problem of the long time consumption of incremental SFM and the problem of the low precision and poor robustness of global SFM; finally, the MVS algorithm of depth-map fusion is used to complete the dense reconstruction of objects, and the related algorithms are used to complete the surface reconstruction, which makes the reconstruction model more realistic.
Journal Article
3D face recognition: A comprehensive survey in 2022
2023
In the past ten years, research on face recognition has shifted to using 3D facial surfaces, as 3D geometric information provides more discriminative features. This comprehensive survey reviews 3D face recognition techniques developed in the past decade, both conventional methods and deep learning methods. These methods are evaluated with detailed descriptions of selected representative works. Their advantages and disadvantages are summarized in terms of accuracy, complexity, and robustness to facial variations (expression, pose, occlusion, etc.). A review of 3D face databases is also provided, and a discussion of future research challenges and directions of the topic.
Journal Article
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
2021
In recent years, deep learning-based models have produced encouraging results for hyperspectral image (HSI) classification. Specifically, Convolutional Long Short-Term Memory (ConvLSTM) has shown good performance for learning valuable features and modeling long-term dependencies in spectral data. However, it is less effective for learning spatial features, which is an integral part of hyperspectral images. Alternatively, convolutional neural networks (CNNs) can learn spatial features, but they possess limitations in handling long-term dependencies due to the local feature extraction in these networks. Considering these factors, this paper proposes an end-to-end Spectral-Spatial 3D ConvLSTM-CNN based Residual Network (SSCRN), which combines 3D ConvLSTM and 3D CNN for handling both spectral and spatial information, respectively. The contribution of the proposed network is twofold. Firstly, it addresses the long-term dependencies of spectral dimension using 3D ConvLSTM to capture the information related to various ground materials effectively. Secondly, it learns the discriminative spatial features using 3D CNN by employing the concept of the residual blocks to accelerate the training process and alleviate the overfitting. In addition, SSCRN uses batch normalization and dropout to regularize the network for smooth learning. The proposed framework is evaluated on three benchmark datasets widely used by the research community. The results confirm that SSCRN outperforms state-of-the-art methods with an overall accuracy of 99.17%, 99.67%, and 99.31% over Indian Pines, Salinas, and Pavia University datasets, respectively. Moreover, it is worth mentioning that these excellent results were achieved with comparatively fewer epochs, which also confirms the fast learning capabilities of the SSCRN.
Journal Article