Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
232
result(s) for
"3D edge"
Sort by:
3D EDGE DETECTION AND COMPARISON USING FOUR-CHANNEL IMAGES
2022
Point cloud segmentation, is a widespread field of research and it is useful in several research topics and applications such as 3D point cloud analysis, scene understanding, semantic segmentation etc. Architectural vector drawings constitute a valuable platform source for scientists and craftsmen while the production of such drawings is time-consuming because many of the creation steps are done manually. Detecting 3D edges in point clouds could provide useful information for the automation of the creation of 3D architectural vector drawings. Hence, a 3D edge detection method is proposed and evaluated with a proof-of-concept experiment and another one using a professional software. The scope of this effort is twofold, firstly the production of semantically enriched 3D dense point clouds exploiting four-channel images in order to detect 3D edges and secondly the comparison of the detected 3D edges with their corresponding edges in a textured 3D model. Comparing 3D edges in the early step of the 3D dense point cloud production and in the final step of 3D textured mesh, provides useful conclusions of the data used for the automatic creation of 3D drawings. Both of the experiments i.e., the proof-of-concept and using the professional SfM-MVS software were conducted using real world data of cultural heritage objects.
Journal Article
High-Visibility Edge-Highlighting Visualization of 3D Scanned Point Clouds Based on Dual 3D Edge Extraction
by
Yamada, Yuri
,
Thufail, Fadjar I.
,
Hasegawa, Kyoko
in
3D scanned point cloud
,
Cloud point curves
,
Clutter
2024
Recent advances in 3D scanning have enabled the digital recording of complex objects as large-scale point clouds, which require clear visualization to convey their 3D shapes effectively. Edge-highlighting visualization is used to improve the comprehensibility of complex 3D structures by enhancing the 3D edges and high-curvature regions of the scanned objects. However, traditional methods often struggle with real-world objects due to inadequate representation of soft edges (i.e., rounded edges) and excessive line clutter, impairing resolution and depth perception. To address these challenges, we propose a novel visualization method for 3D scanned point clouds based on dual 3D edge extraction and opacity–color gradation. Dual 3D edge extraction separately identifies sharp and soft edges, integrating both into the visualization. Opacity–color gradation enhances the clarity of fine structures within soft edges through variations in color and opacity, while also creating a halo effect that improves both resolution and depth perception of the visualized edges. Computation times required for dual 3D edge extraction are comparable to conventional binary statistical edge-extraction methods. Visualizations with opacity–color gradation are executable at interactive rendering speeds. The effectiveness of the proposed method is demonstrated using 3D scanned point cloud data from high-value cultural heritage objects.
Journal Article
Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods
2016
This paper presents an automated and effective method for detecting 3D edges and tracing feature lines from 3D-point clouds. This method is named Analysis of Geometric Properties of Neighborhoods (AGPN), and it includes two main steps: edge detection and feature line tracing. In the edge detection step, AGPN analyzes geometric properties of each query point’s neighborhood, and then combines RANdom SAmple Consensus (RANSAC) and angular gap metric to detect edges. In the feature line tracing step, feature lines are traced by a hybrid method based on region growing and model fitting in the detected edges. Our approach is experimentally validated on complex man-made objects and large-scale urban scenes with millions of points. Comparative studies with state-of-the-art methods demonstrate that our method obtains a promising, reliable, and high performance in detecting edges and tracing feature lines in 3D-point clouds. Moreover, AGPN is insensitive to the point density of the input data.
Journal Article
A new approach for salt dome detection using a 3D multidirectional edge detector
2015
Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.
Journal Article
Stairs and Doors Recognition as Natural Landmarks Based on Clouds of 3D Edge-Points from RGB-D Sensors for Mobile Robot Localization
by
Castro, André
,
Gonçalves, Luiz
,
Nascimento, Tiago
in
3D edge-point cloud
,
Algorithms
,
Localization
2017
Natural landmarks are the main features in the next step of the research in localization of mobile robot platforms. The identification and recognition of these landmarks are crucial to better localize a robot. To help solving this problem, this work proposes an approach for the identification and recognition of natural marks included in the environment using images from RGB-D (Red, Green, Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that are present in the environment is performed. The extraction of edge points of these landmarks is done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed through the S l 0 algorithm, which minimizes the standard deviation of the normals at each point. Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to the filtered edges and determines to which structure they belong to in the current scenario: stairs or doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified. The approach proposed here has been validated with real robot experiments. The performed tests verify the efficacy of our proposed approach.
Journal Article
APPLICATIONS OF 3D-EDGE DETECTION FOR ALS POINT CLOUD
2017
Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN method detects edges based on the analysis of geometric properties of a query point’s neighbourhood. The AGPN method detects two kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the utilization of AGPN method gives a straightforward solution to these applications.
Journal Article
Deep Learning-Based Point Upsampling for Edge Enhancement of 3D-Scanned Data and Its Application to Transparent Visualization
by
Li, Weite
,
Hasegawa, Kyoko
,
Tanaka, Satoshi
in
3D edges
,
3D-scanned point cloud
,
data collection
2021
Large-scale 3D-scanned point clouds enable the accurate and easy recording of complex 3D objects in the real world. The acquired point clouds often describe both the surficial and internal 3D structure of the scanned objects. The recently proposed edge-highlighted transparent visualization method is effective for recognizing the whole 3D structure of such point clouds. This visualization utilizes the degree of opacity for highlighting edges of the 3D-scanned objects, and it realizes clear transparent viewing of the entire 3D structures. However, for 3D-scanned point clouds, the quality of any edge-highlighting visualization depends on the distribution of the extracted edge points. Insufficient density, sparseness, or partial defects in the edge points can lead to unclear edge visualization. Therefore, in this paper, we propose a deep learning-based upsampling method focusing on the edge regions of 3D-scanned point clouds to generate more edge points during the 3D-edge upsampling task. The proposed upsampling network dramatically improves the point-distributional density, uniformity, and connectivity in the edge regions. The results on synthetic and scanned edge data show that our method can improve the percentage of edge points more than 15% compared to the existing point cloud upsampling network. Our upsampling network works well for both sharp and soft edges. A combined use with a noise-eliminating filter also works well. We demonstrate the effectiveness of our upsampling network by applying it to various real 3D-scanned point clouds. We also prove that the improved edge point distribution can improve the visibility of the edge-highlighted transparent visualization of complex 3D-scanned objects.
Journal Article
OPACITY-BASED EDGE HIGHLIGHTING FOR TRANSPARENT VISUALIZATION OF 3D SCANNED POINT CLOUDS
2020
The recent development of 3D scanning technologies has made it possible to quickly and accurately record various 3D objects in the real world. The 3D scanned data take the form of large-scale point clouds, which describe complex 3D structures of the target objects and the surrounding scenes. The complexity becomes significant in cases that a scanned object has internal 3D structures, and the acquired point cloud is created by merging the scanning results of both the interior and surface shapes. To observe the whole 3D structure of such complex point-based objects, the point-based transparent visualization, which we recently proposed, is useful because we can observe the internal 3D structures as well as the surface shapes based on high-quality see-through 3D images. However, transparent visualization sometimes shows us too much information so that the generated images become confusing. To address this problem, in this paper, we propose to combine “edge highlighting” with transparent visualization. This combination makes the created see-through images quite understandable because we can highlight the 3D edges of visualized shapes as high-curvature areas. In addition, to make the combination more effective, we propose a new edge highlighting method applicable to 3D scanned point clouds. We call the method “opacity-based edge highlighting,” which appropriately utilizes the effect of transparency to make the 3D edge regions look clearer. The proposed method works well for both sharp (high-curvature) and soft (low-curvature) 3D edges. We show several experiments that demonstrate our method’s effectiveness by using real 3D scanned point clouds.
Journal Article
Edge Detection by Adaptive Splitting II. The Three-Dimensional Case
by
Lantarón, Sagrario
,
Llanas, Bernardo
in
Algorithms
,
Computational Mathematics and Numerical Analysis
,
Edge detection
2012
In Llanas and Lantarón, J. Sci. Comput.
46
, 485–518 (
2011
) we proposed an algorithm (EDAS-
d
) to approximate the jump discontinuity set of functions defined on subsets of ℝ
d
. This procedure is based on adaptive splitting of the domain of the function guided by the value of an average integral. The above study was limited to the 1D and 2D versions of the algorithm. In this paper we address the three-dimensional problem. We prove an integral inequality (in the case
d
=3) which constitutes the basis of EDAS-3. We have performed detailed computational experiments demonstrating effective edge detection in 3D function models with different interface topologies. EDAS-1 and EDAS-2 appealing properties are extensible to the 3D case.
Journal Article
Spatial point pattern analysis of neurons using Ripley's K-function in 3D
The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains.
Journal Article