Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "3D local binary pattern"
Sort by:
A combination of 3-D discrete wavelet transform and 3-D local binary pattern for classification of mild cognitive impairment
Background The detection of Alzheimer’s Disease (AD) in its formative stages, especially in Mild Cognitive Impairments (MCI), has the potential of helping the clinicians in understanding the condition. The literature review shows that the classification of MCI-converts and MCI-non-converts has not been explored profusely and the maximum classification accuracy reported is rather low. Thus, this paper proposes a Machine Learning approach for classifying patients of MCI into two groups one who converted to AD and the others who are not diagnosed with any signs of AD. The proposed algorithm is also used to distinguish MCI patients from controls (CN). This work uses the Structural Magnetic Resonance Imaging data. Methods This work proposes a 3-D variant of Local Binary Pattern (LBP), called LBP-20 for extracting features. The method has been compared with 3D-Discrete Wavelet Transform (3D-DWT). Subsequently, a combination of 3D-DWT and LBP-20 has been used for extracting features. The relevant features are selected using the Fisher Discriminant Ratio (FDR) and finally the classification has been carried out using the Support Vector Machine. Results The combination of 3D-DWT with LBP-20 results in a maximum accuracy of 88.77. Similarly, the proposed combination of methods is also applied to distinguish MCI from CN. The proposed method results in the classification accuracy of 90.31 in this data. Conclusion The proposed combination is able to extract relevant distribution of microstructures from each component, obtained with the use of DWT and thereby improving the classification accuracy. Moreover, the number of features used for classification is significantly less as compared to those obtained by 3D-DWT. The performance of the proposed method is measured in terms of accuracy, specificity and sensitivity and is found superior in comparison to the existing methods. Thus, the proposed method may contribute to effective diagnosis of MCI and may prove advantageous in clinical settings.
Identifying three-dimensional palmprints with Modified Four-Patch Local Binary Pattern (MFPLBP)
Palmprint biometrics is the best method of identifying an individual with a unique palmprint for every person. The present paper formulates a new methodology towards the identification of 3D palmprints using the Modified Four- Patch Local Binary Pattern (MFPLBP). It improves upon the conventional Four-Patch Local Binary Pattern (FPLBP) by integrating the adaptive weight with the improved texture extraction. Both approaches are created to support the intricate surface information of 3D palmprints. The MFPLBP can exactly capture local variations and is noise and illumination invariant. There are extensive experiments done in this paper and establish that MFPLBP outperforms traditional LBP methods and other stateof- the-art methods in recognition rates. The experiments establish that MFPLBP is a efficient and effective method of making use of 3D palmprints in real-world biometric verification.
Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection
Flame detection is a specialized task in fire detection and forest fire monitoring systems. In this paper, a static and dynamic texture analysis of flame in forest fire detection is proposed. The flames are initially segmented, based on the color in YCbCr (luminance, chrominance blue and chrominance red components) color space called candidate flame region. From the candidate flame region, the static and dynamic texture features are extracted. Static texture features are obtained by hybrid texture descriptors. Dynamic texture features are derived using 2D wavelet decomposition in temporal domain and 3D volumetric wavelet decomposition. Finally, extreme learning machine classifier is used to classify the candidate flame region as real flame or non-flame, based on the extracted texture features. The proposed flame detection system is applied to various fire detection scenes, in the real environments and it effectively distinguishes fire from fire-colored moving objects. The results show that the proposed fire detection technique achieves the average detection rate of 95.65% which is better compared to other state-of-art methods.
RGB‐D face recognition using LBP with suitable feature dimension of depth image
This study proposes a robust method for the face recognition from low‐resolution red, green, and blue‐depth (RGB‐D) cameras acquired images which have a wide range of variations in head pose, illumination, facial expression, and occlusion in some cases. The local binary pattern (LBP) of the RGB‐D images with the suitable feature dimension of Depth image is employed to extract the facial features. On the basis of error correcting output codes, they are fed to multiclass support vector machines (MSVMs) for the off‐line training and validation, and then the online classification. The proposed method is called as the LBP‐RGB‐D‐MSVM with the suitable feature dimension of the depth image. The effectiveness of the proposed method is evaluated by the four databases: Indraprastha Institute of Information Technology, Delhi (IIIT‐D) RGB‐D, visual analysis of people (VAP) RGB‐D‐T, EURECOM, and the authors. In addition, an extended database merged by the first three databases is employed to compare among the proposed method and some existing two‐dimensional (2D) and 3D face recognition algorithms. The proposed method possesses satisfactory performance (as high as 99.10 ± 0.52% for Rank 5 recognition rate in their database) with low computation (62 ms for feature extraction) which is desirable for real‐time applications.
Video‐Based Parking Management
This chapter examines the state of the art in visual parking space monitoring. Available methods for occupancy detection are presented, beginning with two‐dimensional (2D) methods. Vehicle detectors which are based on background modeling, feature detection, and more specific appearance‐based histogram of oriented gradient (HOG) and HOG/local binary pattern (LBP) detectors are analyzed. The second part of the chapter treats 3D methods for parking space monitoring and focuses mainly on stereoscopic imaging. It includes the detailed analysis of a state‐of‐the‐art 3D stereo system system.