Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "3D structure refinement"
Sort by:
Streamlined Postprocessing of NMR Structures with the Molecular Restrainer: A Universal Tool for High-Quality Protein–Ligand Models and Non-Standard Amino Acid Residues
We present a molecular restrainer tool capable of energy-minimizing NMR-derived structures using the universal force field (UFF) and NOE-derived distance restraints. The implementation is a part of SAMSON (version 2024 and newer), an integrative molecular design platform. The strength of our tool lies in its ability to swiftly process any molecule and molecular complex without the need to create force field parameters and topology files. We show, using examples, that the quality of these refined structures is significantly improved compared to the starting structures derived by CYANA. Currently, the implementation is targeted toward the postprocessing of structures derived by the software CYANA but can easily be adapted to other molecular restraint formats. This tool enables the generation of publication-ready protein–ligand complex structures for PDB deposition, requiring minimal additional effort beyond the initial NMR structure calculation.
RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures
Background Computational RNA 3D structure prediction and modeling are rising as complementary approaches to high-resolution experimental techniques for structure determination. They often apply to substitute or complement them. Recently, researchers’ interests have directed towards in silico methods to fit, remodel and refine RNA tertiary structure models. Their power lies in a problem-specific exploration of RNA conformational space and efficient optimization procedures. The aim is to improve the accuracy of models obtained either computationally or experimentally. Results Here, we present RNAfitme, a versatile webserver tool for remodeling of nucleobase- and nucleoside residue conformations in the fixed-backbone RNA 3D structures. Our approach makes use of dedicated libraries that define RNA conformational space. They have been built upon torsional angle characteristics of PDB-deposited RNA structures. RNAfitme can be applied to reconstruct full-atom model of RNA from its backbone; remodel user-selected nucleobase/nucleoside residues in a given RNA structure; predict RNA 3D structure based on the sequence and the template of a homologous molecule of the same size; refine RNA 3D model by reducing steric clashes indicated during structure quality assessment. RNAfitme is a publicly available tool with an intuitive interface. It is freely accessible at http://rnafitme.cs.put.poznan.pl/ Conclusions RNAfitme has been applied in various RNA 3D remodeling scenarios for several types of input data. Computational experiments proved its efficiency, accuracy, and usefulness in the processing of RNAs of any size. Fidelity of RNAfitme predictions has been thoroughly tested for RNA 3D structures determined experimentally and modeled in silico.
Simultaneous determination of disulphide bridge topology and three-dimensional structure using ambiguous intersulphur distance restraints: Possibilities and limitations
Knowledge of the native disulphide bridge topology allows the introduction of conformational restraints between remote parts of the peptide chain. This information is therefore of great importance for the successful determination of the three-dimensional structure of cysteine-rich proteins by NMR spectroscopy. In this paper we investigate the limitations of using ambiguous intersulphur restraints [Nilges, M. (1995) J. Mol. Biol., 245, 645-660] associated with NMR experimental information to determine the native disulphide bridge pattern. Using these restraints in a simulated annealing protocol we have determined the correct topology of numerous examples, including a protein with seven disulphide bridges (phospholipase A2) and a protein in which 25% of the total number of residues are cysteines (mu-conotoxin GIIIB). We have also characterised the behaviour of the method when only limited experimental data is available, and find that the proposed protocol permits disulphide bridge determination even with a small number of restraints (around 5 NOEs--including a long-range restraint--per residue). In addition, we have shown that under these conditions the use of a reduced penalty function allows the identification of misassigned NOE restraints. These results indicate that the use of ambiguous intersulphur distances with the proposed simulated annealing protocol is a general method for the determination of disulphide bridge topology, particularly interesting in the first steps of NMR study of cysteine-rich proteins. Comparison with previously proposed protocols indicates that the presented method is more reliable and the interpretation of results is straightforward.
S2S‐Assemble2: a Semi‐Automatic Bioinformatics Framework to Study and Model RNA 3D Architectures
This chapter contains sections titled: Introduction S2S: an Interactive RNA Alignment Viewer and Editor Assemble2: an Interactive RNA 3D Modeler The Semi‐Automatic Architecture of S2S and Assemble2 Installation of S2S and Assemble2 References
Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy
We report the solution structure of Escherichia coli β-galactosidase (∼465 kDa), solved at ∼3.2-Å resolution by using single-particle cryo-electron microscopy (cryo-EM). Densities for most side chains, including those of residues in the active site, and a catalytic Mg ²⁺ ion can be discerned in the map obtained by cryo-EM. The atomic model derived from our cryo-EM analysis closely matches the 1.7-Å crystal structure with a global rmsd of ∼0.66 Å. There are significant local differences throughout the protein, with clear evidence for conformational changes resulting from contact zones in the crystal lattice. Inspection of the map reveals that although densities for residues with positively charged and neutral side chains are well resolved, systematically weaker densities are observed for residues with negatively charged side chains. We show that the weaker densities for negatively charged residues arise from their greater sensitivity to radiation damage from electron irradiation as determined by comparison of density maps obtained by using electron doses ranging from 10 to 30 e ⁻/Å ². In summary, we establish that it is feasible to use cryo-EM to determine near-atomic resolution structures of protein complexes (<500 kDa) with low symmetry, and that the residue-specific radiation damage that occurs with increasing electron dose can be monitored by using dose fractionation tools available with direct electron detector technology.
RNA 3D Structure Prediction: Progress and Perspective
Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.
The crystal structure of olanzapine form III
The antipsychotic drug olanzapine is well known for its complex polymorphism. Although widely investigated, the crystal structure of one of its anhydrous polymorphs, form III, is still unknown. Its appearance, always in concomitance with forms II and I, and the impossibility of isolating it from that mixture, have prevented its structure determination so far. The scenario has changed with the emerging field of 3D electron diffraction (3D ED) and its great advantages in the characterization of polyphasic mixtures of nanosized crystals. In this study, we show how the application of 3D ED allows the ab initio structure determination and dynamical refinement of this elusive crystal structure that remained unknown for more than 20 years. Olanzapine form III is monoclinic and shows a similar but shifted packing with respect to form II. It is remarkably different from the lowest-energy structures predicted by the energy-minimization algorithms of crystal structure prediction.
Improving microstructure and mechanical properties of thin-wall part fabricated by wire arc additive manufacturing assisted with high-intensity ultrasound
The coarse columnar grains in wire arc additive manufacturing (WAAM) usually lead to performance anisotropy and greatly degrade the mechanical properties. Herein, a novel approach was developed by synchronously introducing a high-intensity ultrasound into the WAAM process. The effect of ultrasound on microstructure and mechanical properties of AM part along the build direction was explored for the first time. Experimental results show that the columnar grains of each layer are replaced by equiaxed grains under the effect of high-intensity ultrasound, and the grain morphology varies along the build height. Due to the acoustic cavitation induced by ultrasound in the molten pool, the grain size is significantly reduced, and the grain refinement strengthening enhances the mechanical properties. The yield strength and ultimate tensile strength (UTS) increase in the vertical direction by 16.4% and 15.8%, respectively. The in-plane anisotropy of UTS declines from 9.39% to 5.12%. The propagation law of ultrasound in large-size AM part is revealed. When the build height is less than 74 mm, the ultrasonic intensity gradually decreases with the height, leading to a reduction in the degree of grain refinement, which is consistent with the experimental observation. The research provides a theoretical basis and technical solution for controlling the grain structure during the WAAM process assisted with high-intensity ultrasound.
3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor
In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural model of a space object from its multi-view images captured by a visible sensor. Given an image sequence, this framework first estimates the relative camera poses and recovers the depths of the surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo (PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising from the symmetric structure and repeated textures of space objects, a new strategy is introduced, in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the structural prior knowledge that most sub-components of artificial space objects are composed of basic geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction framework is tested on both simulated image datasets and real image datasets. Experimental results illustrate that the recovered point cloud models of space objects are accurate and have a complete coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out by the refinement, resulting in an distinct improvement of the structure and visualization of the recovered points.
A Comprehensive Review of Friction Stir Additive Manufacturing (FSAM) of Non-Ferrous Alloys
Additive manufacturing is a key component of the fourth industrial revolution (IR4.0) that has received increased attention over the last three decades. Metal additive manufacturing is broadly classified into two types: melting-based additive manufacturing and solid-state additive manufacturing. Friction stir additive manufacturing (FSAM) is a subset of solid-state additive manufacturing that produces big area multi-layered components through plate addition fashion using the friction stir welding (FSW) concept. Because of the solid-state process in nature, the part produced has equiaxed grain structure, which leads to better mechanical properties with less residual stresses and solidification defects when compared to existing melting-based additive manufacturing processes. The current review article intends to highlight the working principle and previous research conducted by various research groups using FSAM as an emerging material synthesizing technique. The summary of affecting process parameters and defects claimed for different research materials is discussed in detail based on open access experimental data. Mechanical properties such as microhardness and tensile strength, as well as microstructural properties such as grain refinement and morphology, are summarized in comparison to the base material. Furthermore, the viability and potential application of FSAM, as well as its current academic research status with technology readiness level and future recommendations are discussed meticulously.