Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"41.75.Fr"
Sort by:
Femtosecond time-resolved MeV electron diffraction
2015
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (∼3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ∼50 nm rad. The transverse and longitudinal coherence length is ∼11 and ∼2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ∼100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.
Journal Article
Suppression of microbunching instability via a transverse gradient undulator
2015
The microbunching instability in the linear accelerator (linac) of a free-electron laser facility has always been a problem that degrades the electron beam quality. In this paper, a quite simple and inexpensive technique is proposed to smooth the electron beam current profile to suppress the instability. By directly adding a short undulator with a transverse gradient field right after the injector to couple the transverse spread into the longitudinal direction, additional density mixing in the electron beam is introduced to smooth the current profile, which results in the reduction of the gain of the microbunching instability. The magnitude of the density mixing can be easily controlled by varying the strength of the undulator magnetic field. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the accelerator of an x-ray free-electron laser.
Journal Article