Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"58A12"
Sort by:
A tensor product approach to non-local differential complexes
2024
We study differential complexes of Kolmogorov–Alexander–Spanier type on metric measure spaces associated with unbounded non-local operators, such as operators of fractional Laplacian type. We define Hilbert complexes, observe invariance properties and obtain self-adjoint non-local analogues of Hodge Laplacians. For
d
-regular measures and operators of fractional Laplacian type we provide results on removable sets in terms of Hausdorff measures. We prove a Mayer–Vietoris principle and a Poincaré lemma and verify that in the compact Riemannian manifold case the deRham cohomology can be recovered.
Journal Article
The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators
2023
Aromatic B-series were introduced as an extension of standard Butcher-series for the study of volume-preserving integrators. It was proven with their help that the only volume-preserving B-series method is the exact flow of the differential equation. The question was raised whether there exists a volume-preserving integrator that can be expanded as an aromatic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicomplex, similar to the variational bicomplex in variational calculus. We prove the exactness of this bicomplex and use it to describe explicitly the key object in the study of volume-preserving integrators: the aromatic forms of vanishing divergence. The analysis provides us with a handful of new tools to study aromatic B-series, gives insights on the process of integration by parts of trees, and allows to describe explicitly the aromatic B-series of a volume-preserving integrator. In particular, we conclude that an aromatic Runge–Kutta method cannot preserve volume.
Journal Article
Harmonic Forms, Price Inequalities, and Benjamini–Schramm Convergence
2025
We study Betti numbers of sequences of Riemannian manifolds which Benjamini–Schramm converge to their universal covers. Using the Price inequalities we developed elsewhere, we derive two distinct convergence results. First, under a negative Ricci curvature assumption and
no
assumption on sign of the sectional curvature, we have a convergence result for
weakly
uniform discrete sequences of closed Riemannian manifolds. In the negative sectional curvature case, we are able to remove the weakly uniform discreteness assumption. This is achieved by combining a refined Thick–Thin decomposition together with a Moser iteration argument for harmonic forms on manifolds with boundary.
Journal Article