Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,332
result(s) for
"631/114/1314"
Sort by:
Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4
by
Nickols, William A.
,
Huang, Kun D.
,
Wolf, Jonathan
in
631/114/1314
,
631/326/2565/2142
,
Agriculture
2023
Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.
Integration of metagenomic assemblies and microbial isolate genomes improves profiling of uncharacterized species.
Journal Article
Microbiome differential abundance methods produce different results across 38 datasets
by
Douglas, Gavin M.
,
Hayes, Molly G.
,
Dhanani, Akhilesh S.
in
49/23
,
631/114/1314
,
631/114/2163
2022
Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple methods are used interchangeably for this purpose in the literature. Yet, there are few large-scale studies systematically exploring the appropriateness of using these tools interchangeably, and the scale and significance of the differences between them. Here, we compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups. We test for differences in amplicon sequence variants and operational taxonomic units (ASVs) between these groups. Our findings confirm that these tools identified drastically different numbers and sets of significant ASVs, and that results depend on data pre-processing. For many tools the number of features identified correlate with aspects of the data, such as sample size, sequencing depth, and effect size of community differences. ALDEx2 and ANCOM-II produce the most consistent results across studies and agree best with the intersect of results from different approaches. Nevertheless, we recommend that researchers should use a consensus approach based on multiple differential abundance methods to help ensure robust biological interpretations.
Many microbiome differential abundance methods are available, but it lacks systematic comparison among them. Here, the authors compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups, and show ALDEx2 and ANCOM-II produce the most consistent results.
Journal Article
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets
by
Zhou, Bin
,
Zhou, Yingyao
,
Khodabakhshi, Alireza Hadj
in
631/114/1314
,
631/114/2164
,
631/114/2391
2019
A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
With the increasing obtainability of multi-OMICs data comes the need for easy to use data analysis tools. Here, the authors introduce Metascape, a biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets.
Journal Article
Causality matters in medical imaging
2020
Causal reasoning can shed new light on the major challenges in machine learning for medical imaging: scarcity of high-quality annotated data and mismatch between the development dataset and the target environment. A causal perspective on these issues allows decisions about data collection, annotation, preprocessing, and learning strategies to be made and scrutinized more transparently, while providing a detailed categorisation of potential biases and mitigation techniques. Along with worked clinical examples, we highlight the importance of establishing the causal relationship between images and their annotations, and offer step-by-step recommendations for future studies.
Scarcity of high-quality annotated data and mismatch between the development dataset and the target environment are two of the main challenges in developing predictive tools from medical imaging. In this Perspective, the authors show how causal reasoning can shed new light on these challenges.
Journal Article
Gesture recognition by instantaneous surface EMG images
2016
Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.
Journal Article
The practical implementation of artificial intelligence technologies in medicine
by
He, Jianxing
,
Xu, Jie
,
Zhang, Kang
in
Artificial intelligence
,
Data retrieval
,
Interoperability
2019
The development of artificial intelligence (AI)-based technologies in medicine is advancing rapidly, but real-world clinical implementation has not yet become a reality. Here we review some of the key practical issues surrounding the implementation of AI into existing clinical workflows, including data sharing and privacy, transparency of algorithms, data standardization, and interoperability across multiple platforms, and concern for patient safety. We summarize the current regulatory environment in the United States and highlight comparisons with other regions in the world, notably Europe and China.
Journal Article
High-confidence structural annotation of metabolites absent from spectral libraries
2022
Untargeted metabolomics experiments rely on spectral libraries for structure annotation, but, typically, only a small fraction of spectra can be matched. Previous in silico methods search in structure databases but cannot distinguish between correct and incorrect annotations. Here we introduce the COSMIC workflow that combines in silico structure database generation and annotation with a confidence score consisting of kernel density
P
value estimation and a support vector machine with enforced directionality of features. On diverse datasets, COSMIC annotates a substantial number of hits at low false discovery rates and outperforms spectral library search. To demonstrate that COSMIC can annotate structures never reported before, we annotated 12 natural bile acids. The annotation of nine structures was confirmed by manual evaluation and two structures using synthetic standards. In human samples, we annotated and manually validated 315 molecular structures currently absent from the Human Metabolome Database. Application of COSMIC to data from 17,400 metabolomics experiments led to 1,715 high-confidence structural annotations that were absent from spectral libraries.
COSMIC outperforms spectral library search for metabolite annotation and annotates previously unseen structures.
Journal Article
A lipidome atlas in MS-DIAL 4
by
Okazaki Yozo
,
Takahashi, Mikiko
,
Higashi Yasuhiro
in
Algae
,
Biological properties
,
Biological samples
2020
We present Mass Spectrometry-Data Independent Analysis software version 4 (MS-DIAL 4), a comprehensive lipidome atlas with retention time, collision cross-section and tandem mass spectrometry information. We formulated mass spectral fragmentations of lipids across 117 lipid subclasses and included ion mobility tandem mass spectrometry. Using human, murine, algal and plant biological samples, we annotated and semiquantified 8,051 lipids using MS-DIAL 4 with a 1–2% estimated false discovery rate. MS-DIAL 4 helps standardize lipidomics data and discover lipid pathways.Mass spectral fragmentations of lipids across 117 lipid subclasses are presented in a lipidome atlas.
Journal Article