Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
442 result(s) for "631/114/2784"
Sort by:
Improved prediction of protein-protein interactions using AlphaFold2
Predicting the structure of interacting protein chains is a fundamental step towards understanding protein function. Unfortunately, no computational method can produce accurate structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of heterodimeric protein complexes. We find that the AlphaFold2 protocol together with optimised multiple sequence alignments, generate models with acceptable quality (DockQ ≥ 0.23) for 63% of the dimers. From the predicted interfaces we create a simple function to predict the DockQ score which distinguishes acceptable from incorrect models as well as interacting from non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ scores, we can identify 51% of all interacting pairs at 1% FPR. Predicting the structure of protein complexes is extremely difficult. Here, authors apply AlphaFold2 with optimized multiple sequence alignments to model complexes of interacting proteins, enabling prediction of both if and how proteins interact with state-of-art accuracy.
Hierarchical graph learning for protein–protein interaction
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies. Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved.
Large-scale integration of the plasma proteome with genetics and disease
The plasma proteome can help bridge the gap between the genome and diseases. Here we describe genome-wide association studies (GWASs) of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders. We found 18,084 associations between sequence variants and levels of proteins in plasma (protein quantitative trait loci; pQTL), of which 19% were with rare variants (minor allele frequency (MAF) < 1%). We tested plasma protein levels for association with 373 diseases and other traits and identified 257,490 associations. We integrated pQTL and genetic associations with diseases and other traits and found that 12% of 45,334 lead associations in the GWAS Catalog are with variants in high linkage disequilibrium with pQTL. We identified 938 genes encoding potential drug targets with variants that influence levels of possible biomarkers. Combining proteomics, genomics and transcriptomics, we provide a valuable resource that can be used to improve understanding of disease pathogenesis and to assist with drug discovery and development. A genome-wide association study of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders highlights links with over 370 disease endpoints and other traits.
Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform
Liquid chromatography (LC) coupled with data-independent acquisition (DIA) mass spectrometry (MS) has been increasingly used in quantitative proteomics studies. Here, we present a fast and sensitive approach for direct peptide identification from DIA data, MSFragger-DIA, which leverages the unmatched speed of the fragment ion indexing-based search engine MSFragger. Different from most existing methods, MSFragger-DIA conducts a database search of the DIA tandem mass (MS/MS) spectra prior to spectral feature detection and peak tracing across the LC dimension. To streamline the analysis of DIA data and enable easy reproducibility, we integrate MSFragger-DIA into the FragPipe computational platform for seamless support of peptide identification and spectral library building from DIA, data-dependent acquisition (DDA), or both data types combined. We compare MSFragger-DIA with other DIA tools, such as DIA-Umpire based workflow in FragPipe, Spectronaut, DIA-NN library-free, and MaxDIA. We demonstrate the fast, sensitive, and accurate performance of MSFragger-DIA across a variety of sample types and data acquisition schemes, including single-cell proteomics, phosphoproteomics, and large-scale tumor proteome profiling studies. DIA-MS has emerged as a widely used technological platform for quantitative protein profiling. Here, the authors develop MSFragger-DIA, a robust and fast tool to directly identify peptides from DIA spectra. It demonstrates excellent performance across applications from large-scale tumor studies to single-cell proteomics.
DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput
We present an easy-to-use integrated software suite, DIA-NN, that exploits deep neural networks and new quantification and signal correction strategies for the processing of data-independent acquisition (DIA) proteomics experiments. DIA-NN improves the identification and quantification performance in conventional DIA proteomic applications, and is particularly beneficial for high-throughput applications, as it is fast and enables deep and confident proteome coverage when used in combination with fast chromatographic methods. A deep learning-based software tool, DIA-NN, enables deep proteome analysis from data generated using fast chromatographic approaches and data-independent acquisition mass spectrometry.
Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry
Data independent acquisition (DIA) mass spectrometry is a powerful technique that is improving the reproducibility and throughput of proteomics studies. Here, we introduce an experimental workflow that uses this technique to construct chromatogram libraries that capture fragment ion chromatographic peak shape and retention time for every detectable peptide in a proteomics experiment. These coordinates calibrate protein databases or spectrum libraries to a specific mass spectrometer and chromatography setup, facilitating DIA-only pipelines and the reuse of global resource libraries. We also present EncyclopeDIA, a software tool for generating and searching chromatogram libraries, and demonstrate the performance of our workflow by quantifying proteins in human and yeast cells. We find that by exploiting calibrated retention time and fragmentation specificity in chromatogram libraries, EncyclopeDIA can detect 20–25% more peptides from DIA experiments than with data dependent acquisition-based spectrum libraries alone. Data-independent acquisition (DIA)-based proteomics often relies on mass spectrum libraries from data-dependent acquisition experiments. Here, the authors present a method to generate DIA-based chromatogram libraries, enabling DIA-only workflows and detecting more peptides than with spectrum libraries alone.
diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition
Data-independent acquisition modes isolate and concurrently fragment populations of different precursors by cycling through segments of a predefined precursor m/z range. Although these selection windows collectively cover the entire m/z range, overall, only a few per cent of all incoming ions are isolated for mass analysis. Here, we make use of the correlation of molecular weight and ion mobility in a trapped ion mobility device (timsTOF Pro) to devise a scan mode that samples up to 100% of the peptide precursor ion current in m/z and mobility windows. We extend an established targeted data extraction workflow by inclusion of the ion mobility dimension for both signal extraction and scoring and thereby increase the specificity for precursor identification. Data acquired from whole proteome digests and mixed organism samples demonstrate deep proteome coverage and a high degree of reproducibility as well as quantitative accuracy, even from 10 ng sample amounts. diaPASEF makes use of the correlation between the ion mobility and the m / z of peptides to trap and release precursor ions in a TIMS-TOF mass spectrometer for an almost complete sampling of the precursor ion beam with data-independent acquisition.
Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine
Peptide identification in proteomics data is improved using an efficient open search engine. We present a sequence-tag-based search engine, Open-pFind, to identify peptides in an ultra-large search space that includes coeluting peptides, unexpected modifications and digestions. Our method detects peptides with higher precision and speed than seven other search engines. Open-pFind identified 70–85% of the tandem mass spectra in four large-scale datasets and 14,064 proteins, each supported by at least two protein-unique peptides, in a human proteome dataset.