Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14,462 result(s) for "631/136"
Sort by:
Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery
Cell therapy for the injured spinal cord will rely on combined advances in human stem cell technologies and delivery strategies. Here we encapsulate homotypic spinal cord neural stem cells (scNSCs) in an alginate-based neural ribbon delivery platform. We perform a comprehensive in vitro analysis and qualitatively demonstrate graft survival and injury site retention using a rat C4 hemi-contusion model. Pre-configured neural ribbons are transport-stable modules that enable site-ready injection, and can support scNSC survival and retention in vivo. Neural ribbons offer multifunctionality in vitro including co-encapsulation of the injury site extracellular matrix modifier chondroitinase ABC (chABC), tested here in glial scar models, and ability of cervically-patterned scNSCs to differentiate within neural ribbons and project axons for integration with 3-D external matrices. This is the first extensive in vitro characterization of neural ribbon technology, and constitutes a plausible method for reproducible delivery, placement, and retention of viable neural cells in vivo.
Prenatal gene-environment interactions mediate the impact of advanced maternal age on mouse offspring behavior
Autism spectrum disorders encompass diverse neurodevelopmental conditions marked by alterations in social communication and repetitive behaviors. Advanced maternal age is associated with an increased risk of bearing children affected by autism but the etiological factors underlying this association are not well known. Here, we investigated the effects of advanced maternal age on offspring health and behavior in two genetically divergent mouse strains: the BTBR T + Itpr3 tf /J (BTBR) mouse model of idiopathic autism, and the C57BL/6 J (B6) control strain, as a model of genetic variability. In both strains, advanced maternal age negatively affected female reproductive and pregnancy outcomes, and perturbed placental and fetal growth, and the expression of genes in the fetal brain tissues. Postnatally, advanced maternal age had strain-dependent effects on offspring sociability, learning skills, and the occurrence of perseverative behaviors, varying between male and female offspring. These findings disentangle the relationship between genetic determinants and maternal age-related factors in shaping the emergence of autism-like behaviors in mice, highlighting the interplay between maternal age, genetic variability, and prenatal programming, in the occurrence of neurodevelopmental disorders.
A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration
Bone marrow stromal cells (BMSCs) are versatile mesenchymal cell populations underpinning the major functions of the skeleton, a majority of which adjoin sinusoidal blood vessels and express C-X-C motif chemokine ligand 12 (CXCL12). However, how these cells are activated during regeneration and facilitate osteogenesis remains largely unknown. Cell-lineage analysis using Cxcl12-creER mice reveals that quiescent Cxcl12-creER + perisinusoidal BMSCs differentiate into cortical bone osteoblasts solely during regeneration. A combined single cell RNA-seq analysis demonstrate that these cells convert their identity into a skeletal stem cell-like state in response to injury, associated with upregulation of osteoblast-signature genes and activation of canonical Wnt signaling components along the single-cell trajectory. β-catenin deficiency in these cells indeed causes insufficiency in cortical bone regeneration. Therefore, quiescent Cxcl12-creER + BMSCs transform into osteoblast precursor cells in a manner mediated by canonical Wnt signaling, highlighting a unique mechanism by which dormant stromal cells are enlisted for skeletal regeneration. Bone marrow stromal cells (BMSCs) lining sinusoidal blood vessels are mesenchymal cells whose function is critical for the skeleton. Here the authors show that quiescent CXCL12-expressing BMSCs can convert into a skeletal stem cell-like state, and differentiate into cortical bone osteoblasts only in response to injury.
Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells
Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype. We demonstrate aECM hydrogels retain critical in situ ECM components, including structural and basement membrane proteins. While aECM hydrogels facilitate iAT2 proliferation and alveolosphere formation, a subset of iAT2s rapidly change morphology to thin and elongated ring-like cells. This morphological change correlates with upregulation of recently described iAT2-derived transitional cell state genetic markers. As such, we demonstrate a potentially underappreciated role of physiologically relevant aECM in iAT2 differentiation.
Autophagy as a promoter of longevity: insights from model organisms
Autophagy is a conserved process that catabolizes intracellular components to maintain energy homeostasis and to protect cells against stress. Autophagy has crucial roles during development and disease, and evidence accumulated over the past decade indicates that autophagy also has a direct role in modulating ageing. In particular, elegant studies using yeasts, worms, flies and mice have demonstrated a broad requirement for autophagy-related genes in the lifespan extension observed in a number of conserved longevity paradigms. Moreover, several new and interesting concepts relevant to autophagy and its role in modulating longevity have emerged. First, select tissues may require or benefit from autophagy activation in longevity paradigms, as tissue-specific overexpression of single autophagy genes is sufficient to extend lifespan. Second, selective types of autophagy may be crucial for longevity by specifically targeting dysfunctional cellular components and preventing their accumulation. And third, autophagy can influence organismal health and ageing even non-cell autonomously, and thus, autophagy stimulation in select tissues can have beneficial, systemic effects on lifespan. Understanding these mechanisms will be important for the development of approaches to improve human healthspan that are based on the modulation of autophagy.
Single-cell transcriptomic characterization of a gastrulating human embryo
Gastrulation is the fundamental process in all multicellular animals through which the basic body plan is first laid down 1 – 4 . It is pivotal in generating cellular diversity coordinated with spatial patterning. In humans, gastrulation occurs in the third week after fertilization. Our understanding of this process in humans is relatively limited and based primarily on historical specimens 5 – 8 , experimental models 9 – 12 or, more recently, in vitro cultured samples 13 – 16 . Here we characterize in a spatially resolved manner the single-cell transcriptional profile of an entire gastrulating human embryo, staged to be between 16 and 19 days after fertilization. We use these data to analyse the cell types present and to make comparisons with other model systems. In addition to pluripotent epiblast, we identified primordial germ cells, red blood cells and various mesodermal and endodermal cell types. This dataset offers a unique glimpse into a central but inaccessible stage of our development. This characterization provides new context for interpreting experiments in other model systems and represents a valuable resource for guiding directed differentiation of human cells in vitro. The single-cell transcriptional profile of a human embryo between 16 and 19 days after fertilization reveals parallels and differences in gastrulation in humans as compared with mouse and non-human primate models.
A CRISPR/Cas9-generated mutation in the zebrafish orthologue of PPP2R3B causes idiopathic scoliosis
Idiopathic scoliosis (IS) is the deformation and/or abnormal curvature of the spine that develops progressively after birth. It is a very common condition, affecting approximately 4% of the general population, yet the genetic and mechanistic causes of IS are poorly understood. Here, we focus on PPP2R3B , which encodes a protein phosphatase 2A regulatory subunit. We found that PPP2R3B is expressed at sites of chondrogenesis within human foetuses, including the vertebrae. We also demonstrated prominent expression in myotome and muscle fibres in human foetuses, and zebrafish embryos and adolescents. As there is no rodent orthologue of PPP2R3B , we used CRIPSR/Cas9-mediated gene-editing to generate a series of frameshift mutations in zebrafish ppp2r3b . Adolescent zebrafish that were homozygous for this mutation exhibited a fully penetrant kyphoscoliosis phenotype which became progressively worse over time, mirroring IS in humans. These defects were associated with reduced mineralisation of vertebrae, resembling osteoporosis. Electron microscopy demonstrated abnormal mitochondria adjacent to muscle fibres. In summary, we report a novel zebrafish model of IS and reduced bone mineral density. In future, it will be necessary to delineate the aetiology of these defects in relation to bone, muscle, neuronal and ependymal cilia function.
Specification and epigenetic programming of the human germ line
Key Points Regulation of pluripotency and early post-implantation embryonic development have diverged between humans and mice, which might affect the mechanism of primordial germ cell (PGC) specification. Specification of human and mouse PGCs occurs in response to extrinsic signals, including bone morphogenetic protein 2 (BMP2) and BMP4. Models of human PGC specification from pluripotent stem cells suggest that human PGCs originate from mesodermal precursors at the posterior epiblast during the onset of gastrulation, whereas mouse PGCs originate from the pre-gastrulation epiblast. The gene regulatory network for PGC specification and maintenance in humans and mice has diverged. Notably, SRY-box 17 (SOX17), a key endoderm specifier, is critical for PGC specification in humans but not in mice. PGCs undergo genome-wide DNA demethylation, which erases parental epigenetic memories and facilitates germ cell differentiation in humans and mice. Repressive histone modifications might safeguard PGC genome stability during global DNA demethylation. In early germline development, extra-embryonic signals trigger a regulatory network that induces the specification and subsequent epigenetic reprogramming of primordial germ cells, the precursors of sperm and eggs. Here, the authors review germline specification and reprogramming in humans, and discuss the crucial mechanistic differences between these processes in humans and mice. Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes ) and Brachyury , which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury . The T-box factors Eomes and Brachyury activate mesoderm and endoderm programs by establishing accessible chromatin at mesoderm and endoderm enhancers, and bind and repress enhancers of pluripotency and neuroectoderm genes.
Single-cell transcriptome analysis of embryonic and adult endothelial cells allows to rank the hemogenic potential of post-natal endothelium
Hematopoietic stem cells (HSCs) are crucial for the continuous production of blood cells during life. The transplantation of these cells is one of the most common treatments to cure patient suffering of blood diseases. However, the lack of suitable donors is a major limitation. One option to get HSCs matching perfectly a patient is cellular reprogramming. HSCs emerge from endothelial cells in blood vessels during embryogenesis through the endothelial to hematopoietic transition. Here, we used single-cell transcriptomics analysis to compare embryonic and post-natal endothelial cells to investigate the potential of adult vasculature to be reprogrammed in hematopoietic stem cells. Although transcriptional similarities have been found between embryonic and adult endothelial cells, we found some key differences in term of transcription factors expression. There is a deficit of expression of Runx1 , Tal1 , Lyl1 and Cbfb in adult endothelial cells compared to their embryonic counterparts. Using a combination of gene expression profiling and gene regulatory network analysis, we found that endothelial cells from the pancreas, brain, kidney and liver appear to be the most suitable targets for cellular reprogramming into HSCs. Overall, our work provides an important resource for the rational design of a reprogramming strategy for the generation of HSCs.