Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
748
result(s) for
"631/158/2446"
Sort by:
Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia
by
Larsson, D. G. Joakim
,
Zhao, Cheng
,
Wang, Yu
in
631/158/2446/1491
,
631/158/2446/2447
,
631/326/1762
2021
Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals—the fastest growing food animal sector globally—AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000–2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia’s major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.
Trends in antimicrobial resistance (AMR) in aquatic food animals are seldom documented, particularly in Asia. Here, Schar et al. review 749 point prevalence surveys, describing AMR trends in Asian aquaculture and fisheries over two decades, and identifying resistance hotspots as well as regions that would benefit most from future surveillance efforts.
Journal Article
Surface slicks are pelagic nurseries for diverse ocean fauna
2021
Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2–110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km
2
study area in Hawai‘i. Results indicate late-larval fishes actively select slick habitats to capitalize on concentrations of diverse prey and shelter. By providing these survival advantages, surface slicks enhance larval supply and replenishment of adult populations from coral reef, epipelagic, and deep-water ecosystems. Our findings suggest that slicks play a critically important role in enhancing productivity in tropical marine ecosystems.
Journal Article
Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining
2016
Fisheries data assembled by the Food and Agriculture Organization (FAO) suggest that global marine fisheries catches increased to 86 million tonnes in 1996, then slightly declined. Here, using a decade-long multinational ‘catch reconstruction’ project covering the Exclusive Economic Zones of the world’s maritime countries and the High Seas from 1950 to 2010, and accounting for all fisheries, we identify catch trajectories differing considerably from the national data submitted to the FAO. We suggest that catch actually peaked at 130 million tonnes, and has been declining much more strongly since. This decline in reconstructed catches reflects declines in industrial catches and to a smaller extent declining discards, despite industrial fishing having expanded from industrialized countries to the waters of developing countries. The differing trajectories documented here suggest a need for improved monitoring of all fisheries, including often neglected small-scale fisheries, and illegal and other problematic fisheries, as well as discarded bycatch.
Officially reported fisheries statistics suggest that global catches have stabilized since their peak in the mid-1990s. Here, the authors supplement these reported data with best-estimate values of missing data from the literature, and find that global catches have steadily declined over this time period.
Journal Article
Split spawning increases robustness of coral larval supply and inter-reef connectivity
by
Gorton, Rebecca
,
Doropoulos, Christopher
,
Condie, Scott A.
in
631/158/1144
,
631/158/2446
,
631/158/2446/837
2019
Many habitat-building corals undergo mass synchronous spawning events. Yet, despite the enormous amounts of larvae produced, larval dispersal from a single spawning event and the reliability of larval supply are highly dependent on vagaries of ocean currents. However, colonies from the same population will occasionally spawn over successive months. These split spawning events likely help to realign reproduction events to favourable environmental conditions. Here, we show that split spawning may benefit corals by increasing the reliability of larval supply. By modelling the dispersal of coral larvae across Australia’s Great Barrier Reef, we find that split spawning increased the diversity of sources and reliability of larval supply the reefs could receive, especially in regions with low and intrinsically variable connectivity. Such increased larval supply might help counteract the expected declines in reproductive success associated with split spawning events.
Corals occasionally split their spawning over two consecutive months rather than utilising a single annual event. Here, the authors model coral larval dispersal to show that split spawning may increase the reliability of larval supply to reefs, with implications for recovery from disturbances.
Journal Article
Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities
2022
Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (
rrn
) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level
rrn
copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on
rrn
copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a “hunger games” hypothesis to define microbial species abundance rules using the
rrn
copy number, ecological interaction, and nutrient availability.
Environmental and biotic factors control ecological communities. Here, the authors study community ribosomal rRNA gene copy number in coastal sediment and ocean bacterial communities, and in microcosm nutrient addition experiments, to propose a conceptual framework of how nutrient supply and ecological interactions shape the community.
Journal Article
Future phytoplankton diversity in a changing climate
by
Henson, Stephanie A.
,
Allen, Stephanie R.
,
Cael, B. B.
in
21st century
,
631/158/2446
,
704/106/829/826
2021
The future response of marine ecosystem diversity to continued anthropogenic forcing is poorly constrained. Phytoplankton are a diverse set of organisms that form the base of the marine ecosystem. Currently, ocean biogeochemistry and ecosystem models used for climate change projections typically include only 2−3 phytoplankton types and are, therefore, too simple to adequately assess the potential for changes in plankton community structure. Here, we analyse a complex ecosystem model with 35 phytoplankton types to evaluate the changes in phytoplankton community composition, turnover and size structure over the 21st century. We find that the rate of turnover in the phytoplankton community becomes faster during this century, that is, the community structure becomes increasingly unstable in response to climate change. Combined with alterations to phytoplankton diversity, our results imply a loss of ecological resilience with likely knock-on effects on the productivity and functioning of the marine environment.
Phytoplankton form the base of the marine ecosystem but current ocean models used for climate change projections are too simple to assess potential changes in plankton community structure. This study analyses a complex ecosystem model with 35 phytoplankton types to evaluate the changes in phytoplankton community composition, turnover and size structure over the 21st century.
Journal Article
Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption
2015
The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health.
Journal Article
Multi-faceted particle pumps drive carbon sequestration in the ocean
by
Claustre, Hervé
,
Levy, Marina
,
Siegel, David A.
in
631/158/2446/2447
,
704/829/827
,
Aquatic Organisms - metabolism
2019
The ocean’s ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota. Here we review additional biological and physical mechanisms that inject suspended and sinking particles to depth. We propose that these ‘particle injection pumps’ probably sequester as much carbon as the gravitational pump, helping to close the carbon budget and motivating further investigation into their environmental control.
This Review discusses particle injection pumps, which inject suspended and sinking particles to different ocean depths and may sequester as much carbon as the biological gravitational pump.
Journal Article
Phytoplankton dynamics in a changing Arctic Ocean
2020
Changes in the Arctic atmosphere, cryosphere and Ocean are drastically altering the dynamics of phytoplankton, the base of marine ecosystems. This Review addresses four major complementary questions of ongoing Arctic Ocean changes and associated impacts on phytoplankton productivity, phenology and assemblage composition. We highlight trends in primary production over the last two decades while considering how multiple environmental drivers shape Arctic biogeography. Further, we consider changes to Arctic phenology by borealization and hidden under-ice blooms, and how the diversity of phytoplankton assemblages might evolve in a novel Arctic ‘biogeochemical landscape’. It is critical to understand these aspects of changing Arctic phytoplankton dynamics as they exert pressure on marine Arctic ecosystems in addition to direct effects from rapid environmental changes.Ongoing Arctic changes are impacting phytoplankton. This Review considers recent primary productivity trends and the environmental drivers, as well as how these are changing, that drive phytoplankton diversity in the region.
Journal Article
Coral microbiome dynamics, functions and design in a changing world
2019
Corals associate not only with dinoflagellates, which are their algal endosymbionts and which have been extensively studied over the past four decades, but also with a variety of other microorganisms. The coral microbiome includes dinoflagellates, viruses, fungi, archaea and bacteria, with knowledge of the latter growing rapidly. This Review focuses on the bacterial members of the coral microbiome and draws parallels with better-studied microbiomes in other biological systems. We synthesize current understanding of spatial, temporal and host-specific patterns in coral-associated bacterial communities, the drivers shaping these patterns, and the role of the microbiome in acclimatization and adaptation of the host to climate warming. We discuss how this knowledge can be harnessed to assist the future persistence of coral reefs and provide novel perspectives for the development of microbiome engineering and its implications for coral reef conservation and restoration.
Journal Article