Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
969 result(s) for "631/158/852"
Sort by:
Climate change increases cross-species viral transmission risk
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals 1 , 2 . However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife 3 , 4 . In some cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal–virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming. Changes in climate and land use will lead to species aggregating in new combinations at high elevations, in biodiversity hotspots and in areas of high human population density in Asia and Africa, driving the cross-species transmission of animal-associated viruses.
Uncertainty in ensembles of global biodiversity scenarios
While there is a clear demand for scenarios that provide alternative states in biodiversity with respect to future emissions, a thorough analysis and communication of the associated uncertainties is still missing. Here, we modelled the global distribution of ~11,500 amphibian, bird and mammal species and project their climatic suitability into the time horizon 2050 and 2070, while varying the input data used. By this, we explore the uncertainties originating from selecting species distribution models (SDMs), dispersal strategies, global circulation models (GCMs), and representative concentration pathways (RCPs). We demonstrate the overwhelming influence of SDMs and RCPs on future biodiversity projections, followed by dispersal strategies and GCMs. The relative importance of each component varies in space but also with the selected sensitivity metrics and with species’ range size. Overall, this means using multiple SDMs, RCPs, dispersal assumptions and GCMs is a necessity in any biodiversity scenario assessment, to explicitly report associated uncertainties. Attaining global biodiversity projections requires the use of various species distribution and climate modelling and scenario approaches. Here the authors report that model choice can significantly impact results, with particularly uncertainty arising from choice of species distribution model and emission scenario.
The geography of climate and the global patterns of species diversity
Climate’s effect on global biodiversity is typically viewed through the lens of temperature, humidity and resulting ecosystem productivity 1 – 6 . However, it is not known whether biodiversity depends solely on these climate conditions, or whether the size and fragmentation of these climates are also crucial. Here we shift the common perspective in global biodiversity studies, transitioning from geographic space to a climate-defined multidimensional space. Our findings suggest that larger and more isolated climate conditions tend to harbour higher diversity and species turnover among terrestrial tetrapods, encompassing more than 30,000 species. By considering both the characteristics of climate itself and its geographic attributes, we can explain almost 90% of the variation in global species richness. Half of the explanatory power (45%) may be attributed either to climate itself or to the geography of climate, suggesting a nuanced interplay between them. Our work evolves the conventional idea that larger climate regions, such as the tropics, host more species primarily because of their size 7 , 8 . Instead, we underscore the integral roles of both the geographic extent and degree of isolation of climates. This refined understanding presents a more intricate picture of biodiversity distribution, which can guide our approach to biodiversity conservation in an ever-changing world. Nearly 90% of global variation in species richness of birds, mammals, amphibians and reptiles is shown to be explained by the joint effects of climate and the geographic structure (area and isolation) of climate.
The evolution of critical thermal limits of life on Earth
Understanding how species’ thermal limits have evolved across the tree of life is central to predicting species’ responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary ‘attractors’ that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change. Historical climate adaptation can give insight into the potential for adaptation to contemporary changing climates. Here Bennett et al. investigate thermal tolerance evolution across much of the tree of life and find different effects of ancestral climate on the subsequent evolution of ectotherms vs. endotherms.
Blind spots in global soil biodiversity and ecosystem function research
Soils harbor a substantial fraction of the world’s biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Global hotspots for soil nature conservation
Soils are the foundation of all terrestrial ecosystems 1 . However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking 2 . This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils—that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services—peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations. A global field survey that analyses samples of soil from all continents identifies hotspots for soil nature conservation, and shows that different ecological dimensions of soil are associated with different priority areas for conservation.
Marine biogeographic realms and species endemicity
Marine biogeographic realms have been inferred from small groups of species in particular environments (e.g., coastal, pelagic), without a global map of realms based on statistical analysis of species across all higher taxa. Here we analyze the distribution of 65,000 species of marine animals and plants, and distinguish 30 distinct marine realms, a similar proportion per area as found for land. On average, 42% of species are unique to the realms. We reveal 18 continental-shelf and 12 offshore deep-sea realms, reflecting the wider ranges of species in the pelagic and deep-sea compared to coastal areas. The most widespread species are pelagic microscopic plankton and megafauna. Analysis of pelagic species recognizes five realms within which other realms are nested. These maps integrate the biogeography of coastal and deep-sea, pelagic and benthic environments, and show how land-barriers, salinity, depth, and environmental heterogeneity relate to the evolution of biota. The realms have applications for marine reserves, biodiversity assessments, and as an evolution relevant context for climate change studies. Global maps of biogeographic realms help to understand the geological and ecological processes that gave rise to species distributions, yet a marine realm map has been lacking. Here, Costello et al. use a database of over 65,000 species to reveal 30 marine biogeographic realms and high rates of species endemicity.
Global elevational diversity and diversification of birds
A global study of all bird species in mountainous areas shows that richness decreases predictably with elevation, whereas diversification rates increase. Birds' eye view of mountain biodiversity Next to the latitudinal biodiversity gradient, the decline in species richness with elevation is one of the most ubiquitous ecological patterns. Yet consensus about the processes that underlie this gradient is lacking. Ignacio Quintero and Walter Jetz examine the evolutionary underpinnings of elevational gradients in bird species richness in the 46 main mountain systems of the world. They find that across all mountain ranges, species richness decreases linearly with elevation, whereas rates of diversification increase. The findings go against the idea that higher diversification rates support the build-up and maintenance of greater species richness at high elevations, and point to the role that ongoing and recent diversification has in maintaining the highly adapted biodiversity of higher elevations. Mountain ranges harbour exceptionally high biodiversity, which is now under threat from rapid environmental change. However, despite decades of effort, the limited availability of data and analytical tools has prevented a robust and truly global characterization of elevational biodiversity gradients and their evolutionary origins 1 , 2 . This has hampered a general understanding of the processes involved in the assembly and maintenance of montane communities 2 , 3 , 4 . Here we show that a worldwide mid-elevation peak in bird richness is driven by wide-ranging species and disappears when we use a subsampling procedure that ensures even species representation in space and facilitates evolutionary interpretation. Instead, richness corrected for range size declines linearly with increasing elevation. We find that the more depauperate assemblages at higher elevations are characterized by higher rates of diversification across all mountain regions, rejecting the idea that lower recent diversification rates are the general cause of less diverse biota. Across all elevations, assemblages on mountains with high rates of past temperature change exhibit more rapid diversification, highlighting the importance of climatic fluctuations in driving the evolutionary dynamics of mountain biodiversity. While different geomorphological and climatic attributes of mountain regions have been pivotal in determining the remarkable richness gradients observed today, our results underscore the role of ongoing and often very recent diversification processes in maintaining the unique and highly adapted biodiversity of higher elevations.
Global mycorrhizal plant distribution linked to terrestrial carbon stocks
Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks.
Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas
Social media data is increasingly used as a proxy for human activity in different environments, including protected areas, where collecting visitor information is often laborious and expensive, but important for management and marketing. Here, we compared data from Instagram, Twitter and Flickr, and assessed systematically how park popularity and temporal visitor counts derived from social media data perform against high-precision visitor statistics in 56 national parks in Finland and South Africa in 2014. We show that social media activity is highly associated with park popularity, and social media-based monthly visitation patterns match relatively well with the official visitor counts. However, there were considerable differences between platforms as Instagram clearly outperformed Twitter and Flickr. Furthermore, we show that social media data tend to perform better in more visited parks, and should always be used with caution. Based on stakeholder discussions we identified potential reasons why social media data and visitor statistics might not match: the geography and profile of the park, the visitor profile, and sudden events. Overall the results are encouraging in broader terms: Over 60% of the national parks globally have Twitter or Instagram activity, which could potentially inform global nature conservation.