Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
360 result(s) for "631/208/1405"
Sort by:
Haematopoietic stem cell self-renewal in vivo and ex vivo
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.Wilkinson and colleagues discuss haematopoietic stem cell (HSC) self-renewal in mice and humans. Experimental techniques for assaying HSC self-renewal are addressed, along with biological mechanisms regulating HSC self-renewal in vivo and ex vivo, and the therapeutic implications of this understanding.
Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids
Chromosome segregation errors cause aneuploidy and genomic heterogeneity, which are hallmarks of cancer in humans. A persistent high frequency of these errors (chromosomal instability (CIN)) is predicted to profoundly impact tumor evolution and therapy response. It is unknown, however, how prevalent CIN is in human tumors. Using three-dimensional live-cell imaging of patient-derived tumor organoids (tumor PDOs), we show that CIN is widespread in colorectal carcinomas regardless of background genetic alterations, including microsatellite instability. Cell-fate tracking showed that, although mitotic errors are frequently followed by cell death, some tumor PDOs are largely insensitive to mitotic errors. Single-cell karyotype sequencing confirmed heterogeneity of copy number alterations in tumor PDOs and showed that monoclonal lines evolved novel karyotypes over time in vitro. We conclude that ongoing CIN is common in colorectal cancer organoids, and propose that CIN levels and the tolerance for mitotic errors shape aneuploidy landscapes and karyotype heterogeneity. The authors use three-dimensional live-cell imaging of colorectal carcinoma organoids to show that chromosomal instability is widespread. Single-cell sequencing identifies heterogeneity of copy number alterations and shows clonal evolution.
Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage
Meiotic crossovers are limited in number and are prevented from occurring close to each other by crossover interference. In many species, crossover number is subject to sexual dimorphism, and a lower crossover number is associated with shorter chromosome axes lengths. How this patterning is imposed remains poorly understood. Here, we show that overexpression of the Arabidopsis pro-crossover protein HEI10 increases crossovers but maintains some interference and sexual dimorphism. Disrupting the synaptonemal complex by mutating ZYP1 also leads to an increase in crossovers but, in contrast, abolishes interference and disrupts the link between chromosome axis length and crossovers. Crucially, combining HEI10 overexpression and zyp1 mutation leads to a massive and unprecedented increase in crossovers. These observations support and can be predicted by, a recently proposed model in which HEI10 diffusion along the synaptonemal complex drives a coarsening process leading to well-spaced crossover-promoting foci, providing a mechanism for crossover patterning. During meiosis, the number and distribution of crossovers (COs) are tightly controlled, but the mechanistic basis of this control is unclear. Here, by combining experimental data and mathematical modeling, the study advocates a CO patterning model via coarsening through the diffusion of HEI10 along the synaptonemal complex.
Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria
In 2014, the International Myeloma Working Group reclassified patients with smoldering multiple myeloma (SMM) and bone marrow-plasma cell percentage (BMPC%) ≥ 60%, or serum free light chain ratio (FLCr) ≥ 100 or >1 focal lesion on magnetic resonance imaging as multiple myeloma (MM). Predictors of progression in patients currently classified as SMM are not known. We identified 421 patients with SMM, diagnosed between 2003 and 2015. The median time to progression (TTP) was 57 months (CI, 45–72). BMPC% > 20% [hazard ratio (HR): 2.28 (CI, 1.63–3.20); p < 0.0001]; M-protein > 2g/dL [HR: 1.56 (CI, 1.11–2.20); p = 0.01], and FLCr > 20 [HR: 2.13 (CI, 1.55–2.93); p < 0.0001] independently predicted shorter TTP in multivariate analysis. Age and immunoparesis were not significant. We stratified patients into three groups: low risk (none of the three risk factors; n = 143); intermediate risk (one of the three risk factors; n = 121); and high risk (≥2 of the three risk factors; n = 153). The median TTP for low-, intermediate-, and high-risk groups were 110, 68, and 29 months, respectively (p < 0.0001). BMPC% > 20%, M-protein > 2 g/dL, and FLCr > 20 at diagnosis can be used to risk stratify patients with SMM. Patients with high-risk SMM need close follow-up and are candidates for clinical trials aiming to prevent progression.
Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3
New breeding technologies accelerate germplasm improvement and reduce the cost of goods in seed production1–3. Many such technologies could use in vivo paternal haploid induction (HI), which occurs when double fertilization precedes maternal (egg cell) genome loss. Engineering of the essential CENTROMERIC HISTONE (CENH3) gene induces paternal HI in Arabidopsis4–6. Despite conservation of CENH3 function across crops, CENH3-based HI has not been successful outside of the Arabidopsis model system7. Here we report a commercially operable paternal HI line in wheat with a ~7% HI rate, identified by screening genome-edited TaCENH3α-heteroallelic combinations. Unlike in Arabidopsis, edited alleles exhibited reduced transmission in female gametophytes, and heterozygous genotypes triggered higher HI rates than homozygous combinations. These developments might pave the way for the deployment of CENH3 HI technology in diverse crops.Gene editing induces paternal haploid plants in hexaploid wheat.
Genome instability in multiple myeloma
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by clonal proliferation of plasma cells and a heterogenous genomic landscape. Copy number and structural changes due to chromosomal instability (CIN) are common features of MM. In this review, we describe how primary and secondary genetic events caused by CIN can contribute to increased instability across the genome of malignant plasma cells; with a focus on specific driver genomic events, and how they interfere with cell-cycle checkpoints, to prompt accelerated proliferation. We also provide insight into other forms of CIN, such as chromothripsis and chromoplexy. We evaluate how the tumor microenvironment can contribute to a further increase in chromosomal instability in myeloma cells. Lastly, we highlight the role of certain mutational signatures in leading to high mutation rate and genome instability in certain MM patients. We suggest that assessing CIN in MM and its precursors states may help improve predicting the risk of progression to symptomatic disease and relapse and identifying future therapeutic targets.
High-throughput analysis of the satellitome illuminates satellite DNA evolution
Satellite DNA (satDNA) is a major component yet the great unknown of eukaryote genomes and clearly underrepresented in genome sequencing projects. Here we show the high-throughput analysis of satellite DNA content in the migratory locust by means of the bioinformatic analysis of Illumina reads with the RepeatExplorer and RepeatMasker programs. This unveiled 62 satDNA families and we propose the term “satellitome” for the whole collection of different satDNA families in a genome. The finding that satDNAs were present in many contigs of the migratory locust draft genome indicates that they show many genomic locations invisible by fluorescent in situ hybridization (FISH). The cytological pattern of five satellites showing common descent (belonging to the SF3 superfamily) suggests that non-clustered satDNAs can become into clustered through local amplification at any of the many genomic loci resulting from previous dissemination of short satDNA arrays. The fact that all kinds of satDNA (micro- mini- and satellites) can show the non-clustered and clustered states suggests that all these elements are mostly similar, except for repeat length. Finally, the presence of VNTRs in bacteria, showing similar properties to non-clustered satDNAs in eukaryotes, suggests that this kind of tandem repeats show common properties in all living beings.
Cancer aneuploidies are shaped primarily by effects on tumour fitness
Aneuploidies—whole-chromosome or whole-arm imbalances—are the most prevalent alteration in cancer genomes 1 , 2 . However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events 1 , 2 . Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness 1 , 2 . These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis. A study reports the development of an algorithm, BISCUT, that detects genomic loci under selective pressure by relying on the distribution of breakpoints across chromosome arms, and uses it to explore how aneuploidies affect tumorigenesis.
The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies
Michael Talkowski and colleagues analyze balanced chromosomal abnormalities in 273 individuals by whole-genome sequencing. Their findings suggest that sequence-level resolution improves prediction of clinical outcomes for balanced rearrangements and provides insight into pathogenic mechanisms such as altered gene regulation due to changes in chromosome topology. Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C , a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology.
Breakage of cytoplasmic chromosomes by pathological DNA base excision repair
Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease 1 – 4 . Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges 5 – 8 . These structures are associated with fragile nuclear envelopes that spontaneously rupture 9 , 10 , leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA–DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N -methyl-purine DNA glycosylase 11 , 12 (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease 12 (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands 13 , 14 . This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA–DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here. DNA damage during chromothripsis is caused by deoxyinosine formation on accumulated RNA–DNA hybrids in micronuclei that are then recognized by N -methyl-purine DNA glycosylase and cleaved by apurinic/apyrimidinic endonuclease.