Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
351
result(s) for
"631/250/251/1574"
Sort by:
LAG-3 as the third checkpoint inhibitor
by
Vignali, Dario A. A.
,
Aggarwal, Vaishali
,
Workman, Creg J.
in
631/250/1619/554
,
631/250/251/1574
,
631/250/580/1884
2023
Lymphocyte activation gene 3 (LAG-3) is an inhibitory receptor that is highly expressed by exhausted T cells. LAG-3 is a promising immunotherapeutic target, with more than 20 LAG-3-targeting therapeutics in clinical trials and a fixed-dose combination of anti-LAG-3 and anti-PD-1 now approved to treat unresectable or metastatic melanoma. Although LAG-3 is widely recognized as a potent inhibitory receptor, important questions regarding its biology and mechanism of action remain. In this Perspective, we focus on gaps in the understanding of LAG-3 biology and discuss the five biggest topics of current debate and focus regarding LAG-3, including its ligands, signaling and mechanism of action, its cell-specific functions, its importance in different disease settings, and the development of novel therapeutics.
LAG-3 is a T cell inhibitory receptor with a lot of promise as a target for immunotherapy, but considerable research will be needed to fully understand the nuances of this receptor and how best to target it, as outlined in this Perspective.
Journal Article
CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours
2021
Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells
1
. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis
1
. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8
+
T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (T
reg
) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of T
reg
cells is dependent on T
reg
cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with T
reg
cell function in the presence of glucose.
CTLA-4 promotes glucose uptake by tumour-infiltrating regulatory T cells, making them unstable.
Journal Article
Understanding the tumor immune microenvironment (TIME) for effective therapy
by
Kersten, Kelly
,
Howcroft, T. Kevin
,
Fearon, Douglas F.
in
631/250/251/1574
,
692/699/67/327
,
B cells
2018
The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
The tumor immune microenvironment influences tumor progression and response to immunotherapy; its further characterization will improve therapeutic outcome.
Journal Article
Tumour-infiltrating lymphocytes: from prognosis to treatment selection
2023
Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity. Accordingly, the presence of TILs contains prognostic and predictive value. In 2011, we performed a systematic review and meta-analysis on the prognostic value of TILs across cancer types. Since then, the advent of immune checkpoint blockade (ICB) has renewed interest in the analysis of TILs. In this review, we first describe how our understanding of the prognostic value of TIL has changed over the last decade. New insights on novel TIL subsets are discussed and give a broader view on the prognostic effect of TILs in cancer. Apart from prognostic value, evidence on the predictive significance of TILs in the immune therapy era are discussed, as well as new techniques, such as machine learning that strive to incorporate these predictive capacities within clinical trials.
Journal Article
Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine
2020
Tryptophan catabolism by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2 (IDO/TDO) promotes immunosuppression across different cancer types. The tryptophan metabolite L-Kynurenine (Kyn) interacts with the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) to drive the generation of Tregs and tolerogenic myeloid cells and PD-1 up-regulation in CD8
+
T cells. Here, we show that the AHR pathway is selectively active in IDO/TDO-overexpressing tumors and is associated with resistance to immune checkpoint inhibitors. We demonstrate that IDO-Kyn-AHR-mediated immunosuppression depends on an interplay between Tregs and tumor-associated macrophages, which can be reversed by AHR inhibition. Selective AHR blockade delays progression in IDO/TDO-overexpressing tumors, and its efficacy is improved in combination with PD-1 blockade. Our findings suggest that blocking the AHR pathway in IDO/TDO expressing tumors would overcome the limitation of single IDO or TDO targeting agents and constitutes a personalized approach to immunotherapy, particularly in combination with immune checkpoint inhibitors.
The tryptophan metabolite kynurenine is an endogenous ligand of the aryl hydrocarbon receptor (AHR). Here, the authors show that AHR targeting in IDO/TDO-expressing tumours counteracts a regulatory T cell/macrophage suppressive axis and synergizes with immune checkpoint blockade to hinder tumour growth.
Journal Article
Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation
2023
The immunologically “cold” microenvironment of triple negative breast cancer results in resistance to current immunotherapy. Here, we reveal the immunoadjuvant property of gas therapy with cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation to augment aggregation-induced emission (AIE)-active luminogen (AIEgen)-based photoimmunotherapy. A virus-mimicking hollow mesoporous tetrasulfide-doped organosilica is developed for co-encapsulation of AIEgen and manganese carbonyl to fabricate gas nanoadjuvant. As tetra-sulfide bonds are responsive to intratumoral glutathione, the gas nanoadjuvant achieves tumor-specific drug release, promotes photodynamic therapy, and produces hydrogen sulfide (H
2
S). Upon near-infrared laser irradiation, the AIEgen-mediated phototherapy triggers the burst of carbon monoxide (CO)/Mn
2+
. Both H
2
S and CO can destroy mitochondrial integrity to induce leakage of mitochondrial DNA into the cytoplasm, serving as gas immunoadjuvants to activate cGAS-STING pathway. Meanwhile, Mn
2+
can sensitize cGAS to augment STING-mediated type I interferon production. Consequently, the gas nanoadjuvant potentiates photoimmunotherapy of poorly immunogenic breast tumors in female mice.
Gas-based therapy is an emerging therapeutic option for cancer treatment. Here the authors design a virus-mimicking hollow mesoporous tetrasulfide-doped organosilica for co-encapsulation of an aggregation-induced emission (AIE)-active luminogen and manganese carbonyl to fabricate a STING activating gas nano-adjuvant for photo-immunotherapy, promoting anti-tumor immune response in preclinical models.
Journal Article
Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression
by
Weber, Rebekka
,
Hu, Xiaoying
,
Groth, Christopher
in
631/250/251/1574
,
631/67/580/1884
,
Adenosine
2019
Under steady-state conditions, bone marrow-derived immature myeloid cells (IMC) differentiate into granulocytes, macrophages and dendritic cells (DCs). This differentiation is impaired under chronic inflammatory conditions, which are typical for tumour progression, leading to the accumulation of IMCs. These cells are capable of inducing strong immunosuppressive effects through the expression of various cytokines and immune regulatory molecules, inhibition of lymphocyte homing, stimulation of other immunosuppressive cells, depletion of metabolites critical for T cell functions, expression of ectoenzymes regulating adenosine metabolism, and the production of reactive species. IMCs are therefore designated as myeloid-derived suppressor cells (MDSCs), and have been shown to accumulate in tumour-bearing mice and cancer patients. MDSCs are considered to be a strong contributor to the immunosuppressive tumour microenvironment and thus an obstacle for many cancer immunotherapies. Consequently, numerous studies are focused on the characterisation of MDSC origin and their relationship to other myeloid cell populations, their immunosuppressive capacity, and possible ways to inhibit MDSC function with different approaches being evaluated in clinical trials. This review analyses the current state of knowledge on the origin and function of MDSCs in cancer, with a special emphasis on the immunosuppressive pathways pursued by MDSCs to inhibit T cell functions, resulting in tumour progression. In addition, we describe therapeutic strategies and clinical benefits of MDSC targeting in cancer.
Journal Article
PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function
2024
Expansion of antigen-experienced CD8
+
T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer
1
. Interleukin-2 (IL-2) acts as a key regulator of CD8
+
cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability
2
,
3
. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE
2
), a known negative regulator of immune response in the tumour microenvironment
4
,
5
, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8
+
TILs via the PGE
2
receptors EP2 and EP4. Mechanistically, PGE
2
inhibits IL-2 sensing in TILs by downregulating the IL-2Rγ
c
chain, resulting in defective assembly of IL-2Rβ–IL2Rγ
c
membrane dimers. This results in impaired IL-2–mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE
2
signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE
2
in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.
Prostaglandin E2 from the tumour microenvironment impairs interleukin-2 sensing by tumour-infiltrating lymphocytes, restricting proliferative response and promoting T cell death via metabolic impairment and ferroptosis.
Journal Article
Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards
by
Sica, Antonio
,
Bronte, Vincenzo
,
Vonderheide, Robert H.
in
631/250/232/2059
,
631/250/251/1574
,
631/67/580
2016
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population expanded in cancer and other chronic inflammatory conditions. Here the authors identify the challenges and propose a set of minimal reporting guidelines for mouse and human MDSC.
Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. In recent years, ample evidence supports key contributions of MDSC to tumour progression through both immune-mediated mechanisms and those not directly associated with immune suppression. MDSC are the subject of intensive research with >500 papers published in 2015 alone. However, the phenotypic, morphological and functional heterogeneity of these cells generates confusion in investigation and analysis of their roles in inflammatory responses. The purpose of this communication is to suggest characterization standards in the burgeoning field of MDSC research.
Journal Article
The immunology of renal cell carcinoma
2020
Renal cell carcinoma (RCC) is the most common type of kidney cancer and comprises several subtypes with unique characteristics. The most common subtype (~70% of cases) is clear-cell RCC. RCC is considered to be an immunogenic tumour but is known to mediate immune dysfunction in large part by eliciting the infiltration of immune-inhibitory cells, such as regulatory T cells and myeloid-derived suppressor cells, into the tumour microenvironment. Several possible mechanisms have been proposed to explain how these multiple tumour-infiltrating cell types block the development of an effective anti-tumour immune response, including inhibition of the activity of effector T cells and of antigen presenting cells via upregulation of suppressive factors such as checkpoint molecules. Targeting immune suppression using checkpoint inhibition has resulted in clinical responses in some patients with RCC and combinatorial approaches involving checkpoint blockade are now standard of care in patients with advanced RCC. However, a substantial proportion of patients do not benefit from checkpoint blockade. The identification of reliable biomarkers of response to checkpoint blockade is crucial to facilitate improvements in the clinical efficacy of these therapies. In addition, there is a need for the development of other immune-based strategies that address the shortcomings of checkpoint blockade, such as adoptive cell therapies.Here, the authors describe the effector cell populations and immunosuppressive networks that are present in renal cell carcinoma (RCC) tumours. They also discuss the use of immune checkpoint inhibitors and novel approaches such as adoptive cell therapy in patients with RCC.
Journal Article