Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,489
result(s) for
"631/250/255/2514"
Sort by:
Pathological sequelae of long-haul COVID
2022
The world continues to contend with successive waves of coronavirus disease 2019 (COVID-19), fueled by the emergence of viral variants. At the same time, persistent, prolonged and often debilitating sequelae are increasingly recognized in convalescent individuals, named ‘post-COVID-19 syndrome’ or ‘long-haul COVID’. Clinical symptomatology includes fatigue, malaise, dyspnea, defects in memory and concentration and a variety of neuropsychiatric syndromes as the major manifestations, and several organ systems can be involved. The underlying pathophysiological mechanisms are poorly understood at present. This Review details organ-specific sequelae of post-COVID-19 syndromes and examines the underlying pathophysiological mechanisms available so far, elaborating on persistent inflammation, induced autoimmunity and putative viral reservoirs. Finally, we propose diagnostic strategies to better understand this heterogeneous disorder that continues to afflict millions of people worldwide.It is increasingly obvious that individuals are experiencing post-COVID-19 syndromes, or ‘long-haul COVID’. Here, Merad and Mehandru eview currently available knowledge of the underlying pathophysiological mechanisms of these sequelae, elaborating on persistent inflammation, induced autoimmunity and putative viral reservoirs.
Journal Article
Monkeypox: disease epidemiology, host immunity and clinical interventions
2022
Monkeypox virus (MPXV), which causes disease in humans, has for many years been restricted to the African continent, with only a handful of sporadic cases in other parts of the world. However, unprecedented outbreaks of monkeypox in non-endemic regions have recently taken the world by surprise. In less than 4 months, the number of detected MPXV infections has soared to more than 48,000 cases, recording a total of 13 deaths. In this Review, we discuss the clinical, epidemiological and immunological features of MPXV infections. We also highlight important research questions and new opportunities to tackle the ongoing monkeypox outbreak.In this Review, Ng and colleagues examine the clinical, epidemiological and immunological aspects of monkeypox virus (MPXV) infections, with a focus on mechanisms of host immunity to MPXV. The authors also consider the unique epidemiological and pathological characteristics of the current non-endemic outbreak of the virus and discuss vaccines, therapeutics and outstanding research questions.
Journal Article
The evolution of SARS-CoV-2
by
Markov, Peter V
,
Simmonds, Peter
,
Ghafari, Mahan
in
Antigens
,
Chronic infection
,
Coronaviruses
2023
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.In this Review, Markov, Katzourakis and colleagues explore the evolution of SARS-CoV-2 at different scales, the phases of the COVID-19 pandemic, factors that drive the evolution of the virus, theories for the emergence of epidemiologically important variants and potential future evolutionary scenarios and their likely health repercussions.
Journal Article
RIG-I-like receptors: their regulation and roles in RNA sensing
2020
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.The RNA-sensing retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are important inducers of type I interferons and other antiviral immune mediators. Here, Jan Rehwinkel and Michaela Gack explain how members of the RLR family are regulated and reflect on the importance of the RLRs in viral infection, autoimmunity and cancer.
Journal Article
Milder disease with Omicron: is it the virus or the pre-existing immunity?
2022
At the population level we are seeing milder disease during the Omicron wave of the SARS-CoV-2 pandemic. Is this due to the virus or pre-existing immunity, and what should we expect next?
Journal Article
SARS-CoV-2 pathogenesis
2022
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a ‘leaky state’ of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.In this Review, Lamers and Haagmans explore recent clinical and experimental advances in understanding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis, interactions with host cells and the involvement of the immune system in the development of severe disease. Specifically, they focus on mechanisms underlying the development of COVID-19-associated acute respiratory distress syndrome.
Journal Article
Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection
by
Burrell, Louise M
,
Wilson, Daniel B
,
Patel, Sheila K
in
Coronaviruses
,
COVID-19
,
Immune system
2022
A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-β) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-β, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5–81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.Phetsouphanh and colleagues show that individuals with long COVID have persistent activation of the innate and adaptive immune system at 8 months after infection and define a set of analytes associated with long COVID.
Journal Article
Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2
by
Munter, Sadie E.
,
Goldberg, Sarah A.
,
Ma, Tongcui
in
631/250/255/2514
,
631/326/596/4130
,
Adaptive immunity
2024
Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used ‘omic” assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4
+
T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8
+
T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.
Roan et al. use Olink and single‐cell RNA sequencing (scRNA-seq) to show a dysregulated crosstalk between the cellular and humoral immune responses in individuals with long COVID 8 months postinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Journal Article
Diverse functional autoantibodies in patients with COVID-19
2021
COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses
1
–
6
. Although pathological innate immune activation is well-documented in severe disease
1
, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling
7
to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.
Rapid extracellular antigen profiling of a cohort of 194 individuals infected with SARS-CoV-2 uncovers diverse autoantibody responses that affect COVID-19 disease severity, progression and clinical and immunological characteristics.
Journal Article