Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
745
result(s) for
"631/250/256/2515"
Sort by:
Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities
2021
Periodontitis, a major inflammatory disease of the oral mucosa, is epidemiologically associated with other chronic inflammation-driven disorders, including cardio-metabolic, neurodegenerative and autoimmune diseases and cancer. Emerging evidence from interventional studies indicates that local treatment of periodontitis ameliorates surrogate markers of comorbid conditions. The potential causal link between periodontitis and its comorbidities is further strengthened by recent experimental animal studies establishing biologically plausible and clinically consistent mechanisms whereby periodontitis could initiate or aggravate a comorbid condition. This multi-faceted ‘mechanistic causality’ aspect of the link between periodontitis and comorbidities is the focus of this Review. Understanding how certain extra-oral pathologies are affected by disseminated periodontal pathogens and periodontitis-associated systemic inflammation, including adaptation of bone marrow haematopoietic progenitors, may provide new therapeutic options to reduce the risk of periodontitis-associated comorbidities.Periodontitis has been causally linked to the development of other chronic inflammatory diseases outside the oral mucosa. In this Review, George Hajishengallis and Triantafyllos Chavakis consider the molecular basis of these links.
Journal Article
Inflammation and immune dysfunction in Parkinson disease
2022
Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the ‘perfect storm’ that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.This Review from Tansey and colleagues explores how an ageing immune system, host genetics and exposure to various environmental stressors combine to promote the development of Parkinson disease.
Journal Article
Strategies for targeting cytokines in inflammatory bowel disease
2024
Cytokines produced by immune cells contribute to the development and perpetuation of inflammatory bowel disease (IBD), namely Crohn’s disease and ulcerative colitis, by regulating various aspects of the inflammatory response. Pro-inflammatory cytokines trigger chronic intestinal inflammation, tissue damage, carcinogenesis and perpetuation of disease and suppress the resolution of inflammation in IBD. The clinical success of antibodies that neutralize tumour necrosis factor (TNF) and the cytokine IL-12p40 in individuals with IBD has underscored this concept. Moreover, genetic and preclinical studies have emphasized the crucial role of IL-23 in IBD, leading to clinical approval of antibodies targeting this cytokine. Multiple studies have also investigated the administration of cytokines with assumed anti-inflammatory effects, but this approach has yet to show any real clinical benefit in individuals with IBD. Recent studies have targeted the cytokine network through the use of multi-cytokine blockers (for example, Janus kinase (JAK) inhibitors), IL-2-induced regulatory T cells or advanced combination therapies that use multiple cytokine blockers simultaneously (for example, anti-TNF along with anti-IL-23 antibodies). This Review will focus on our current understanding of how cytokines produced by innate and adaptive immune cells contribute to IBD pathogenesis and discuss how their modulation may inform future treatments for IBD.This Review explains how cytokines contribute to the pathogenesis of inflammatory bowel disease (IBD). The author highlights the cytokine-targeting drugs that are already being successfully used in the clinic and discusses the potential of other cytokine-modulating drugs in IBD.
Journal Article
The inflammatory pathogenesis of colorectal cancer
2021
The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.Mark Schmitt and Florian Greten describe the mechanisms by which chronic inflammation can initiate tumorigenesis and by which tumour-elicited and therapy-induced inflammation can promote colorectal cancer, as well as the role of extrinsic factors such as diet, the microbiota and the mycobiota.
Journal Article
Sleep and inflammation: partners in sickness and in health
The discovery of reciprocal connections between the central nervous system, sleep and the immune system has shown that sleep enhances immune defences and that afferent signals from immune cells promote sleep. One mechanism by which sleep is proposed to provide a survival advantage is in terms of supporting a neurally integrated immune system that might anticipate injury and infectious threats. However, in modern times, chronic social threats can drive the development of sleep disturbances in humans, which can contribute to the dysregulation of inflammatory and antiviral responses. In this Review, I describe our current understanding of the relationship between sleep dynamics and host defence mechanisms, with a focus on cytokine responses, the neuroendocrine and autonomic pathways that connect sleep with the immune system and the role of inflammatory peptides in the homeostatic regulation of sleep. Furthermore, I discuss the therapeutic potential of harnessing these reciprocal mechanisms of sleep–immune regulation to mitigate the risk of inflammatory and infectious diseases.
Journal Article
Lactate modulation of immune responses in inflammatory versus tumour microenvironments
2021
The microenvironment in cancerous tissues is immunosuppressive and pro-tumorigenic, whereas the microenvironment of tissues affected by chronic inflammatory disease is pro-inflammatory and anti-resolution. Despite these opposing immunological states, the metabolic states in the tissue microenvironments of cancer and inflammatory diseases are similar: both are hypoxic, show elevated levels of lactate and other metabolic by-products and have low levels of nutrients. In this Review, we describe how the bioavailability of lactate differs in the microenvironments of tumours and inflammatory diseases compared with normal tissues, thus contributing to the establishment of specific immunological states in disease. A clear understanding of the metabolic signature of tumours and inflammatory diseases will enable therapeutic intervention aimed at resetting the bioavailability of metabolites and correcting the dysregulated immunological state, triggering beneficial cytotoxic, inflammatory responses in tumours and immunosuppressive responses in chronic inflammation.Lactate accumulates in cancerous and chronically inflamed tissues, where it has diverse and often opposing effects. Here, the authors review the activities of this metabolite in these distinct circumstances, identifying opportunities for therapeutic modulation of the metabolic signature in tumours and inflammatory diseases.
Journal Article
Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis
2023
The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of
SFRP2
+
fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The
SFRP2
+
fibroblast communication network involves production of
CCL13
,
CCL19
and
CXCL12
, connected by ligand-receptor interactions to other spatially proximate cell types:
CCR2
+
myeloid cells,
CCR7
+
LAMP3
+
dendritic cells, and
CXCR4
expressed on both CD8
+
Tc17 cells and keratinocytes, respectively. The
SFRP2
+
fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions.
Changes in Psoriasis and other inflammatory skin diseases during severity stages can be investigated using single cell and spatial transcriptomics. Here the authors compare different inflammatory skin diseases to emphasise differences in immune cells and inflammatory markers particularly keratinocytes and fibroblasts.
Journal Article
Neutrophils in chronic inflammatory diseases
by
Soehnlein Oliver
,
Herrero-Cervera, Andrea
,
Kenne Ellinor
in
Aging
,
Arteriosclerosis
,
Autoimmune diseases
2022
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Journal Article
Immunomodulation by radiotherapy in tumour control and normal tissue toxicity
2022
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.This Review discusses the immunomodulatory effects of radiotherapy on both the tumour microenvironment and surrounding healthy tissue. The authors explain how radiotherapy can cause chronic inflammation and organ dysfunction in patients, and, in particular, they consider the impact of radiotherapy-induced immune effects in the lungs and intestine.
Journal Article
Distinct fibroblast subsets drive inflammation and damage in arthritis
2019
The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs)
1
,
2
. However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage
3
,
4
–
5
. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα)
+
fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα
+
population: FAPα
+
THY1
+
immune effector fibroblasts located in the synovial sub-lining, and FAPα
+
THY1
−
destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα
+
THY1
−
fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα
+
THY1
+
fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.
Distinct subsets of fibroblasts, which differ in their expression of thymus cell antigen 1 (THY1), are responsible for inflammation and tissue damage in mouse models of arthritis.
Journal Article